Abstract semilinear equations with small nonlinearities
Commentationes Mathematicae Universitatis Carolinae, Tome 12 (1971) no. 4, pp. 785-805 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 35L05, 35Q99, 47H10, 47H15, 47J05
@article{CMUC_1971_12_4_a10,
     author = {Sova, Miroslav},
     title = {Abstract semilinear equations with small nonlinearities},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {785--805},
     year = {1971},
     volume = {12},
     number = {4},
     mrnumber = {0291912},
     zbl = {0235.47034},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1971_12_4_a10/}
}
TY  - JOUR
AU  - Sova, Miroslav
TI  - Abstract semilinear equations with small nonlinearities
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1971
SP  - 785
EP  - 805
VL  - 12
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1971_12_4_a10/
LA  - en
ID  - CMUC_1971_12_4_a10
ER  - 
%0 Journal Article
%A Sova, Miroslav
%T Abstract semilinear equations with small nonlinearities
%J Commentationes Mathematicae Universitatis Carolinae
%D 1971
%P 785-805
%V 12
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1971_12_4_a10/
%G en
%F CMUC_1971_12_4_a10
Sova, Miroslav. Abstract semilinear equations with small nonlinearities. Commentationes Mathematicae Universitatis Carolinae, Tome 12 (1971) no. 4, pp. 785-805. http://geodesic.mathdoc.fr/item/CMUC_1971_12_4_a10/

[1] J. K. HALE: Periodic solutions of a class of hyperbolic equations containing a small parameter. Arch. Ration. Mech. Anal. 23 (1967), 380-398. | MR | Zbl

[2] H. LOVICAROVÁ: Periodic solutions of a weakly nonlinear wave equation in one dimension. Czech. Math. J. 19 (1969), 324-342. | MR

[3] L. de SIMON G. TORELLI: Soluzioni periodiche di equazioni a derivate parziali di tipo iperbolico non lineari. Ren. Sem. Mat. Univ. Padova 40 (1968), 380-401. | MR

[4] G. TORELLI: Soluzioni periodiche dell'equazione non lineare $u\sb{tt}-u\sb{xx}+\varepsilon F(x,\,t,\,u)=0$. Rend. Ist. di Matem. Univ. Trieste. 1 (1969), 123-137. | MR

[5] S. BANCROFT J. K. HALE D. SWEET: Alternative problems for nonlinear functional equations. J. of Diff. Equations 4 (1968), 40-56. | MR

[6] W. S. HALL: On the existence of periodic solutions for the equations $D\sb{tt}u+(-1)\sp{p}\,D\sb{x}\sp{2p}u=\varepsilon f(·,·,u)$. J. of Diff. Equations 7 (1970), 509-526. | MR