@article{CMUC_1971_12_4_a1,
author = {Vlach, Milan},
title = {A separation theorem for finite families},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {655--660},
year = {1971},
volume = {12},
number = {4},
mrnumber = {0290126},
zbl = {0229.52008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1971_12_4_a1/}
}
Vlach, Milan. A separation theorem for finite families. Commentationes Mathematicae Universitatis Carolinae, Tome 12 (1971) no. 4, pp. 655-660. http://geodesic.mathdoc.fr/item/CMUC_1971_12_4_a1/
[1] A. Ya. DUBOVITSKII, A. A. MILYUTIN: Extremum problems in the presence of restrictions. Zh. Vychisl. Mat. i Fyz., Vol. 5, No. 3 (1965), 395-453. | Zbl
[2] C. LOBRY: Etude géométrique des problèmes d'optimisation en présence de constraintes. University de Grenoble, 1967.
[3] H. HALKIN: A satisfactory treatment of equality and operator constraints in the Dubovitskii-Milyutin optimization formalism. Journal of Optimization Theory and Applications, Vol. 6, No. 2 (1970), 138-149. | MR | Zbl
[4] I. V. GIRSANOV: Lectures in mathematical theory of extremum problems. (Russian), Moscow University, 1970.
[5] M. VLACH: On necessary conditions of optimality in linear spaces. Comment. Math. Univ. Carolinae 11 (1970), 501-512. | MR | Zbl
[6] V. KLEE: Separation and support properties of convex sets, A survey in control theory and the calculus of variations. edited by A. V. Balakrishnan, Academic Press, 1969, 235-303. | MR
[7] J. L. KELLEY I. NAMIOKA, co-authors: Linear topological spaces. D. van Nostrand Company, Inc., 1963. | MR