A shrinking of a category of societies is a universal partly ordered class
Commentationes Mathematicae Universitatis Carolinae, Tome 12 (1971) no. 2, pp. 401-411
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{CMUC_1971_12_2_a14,
author = {Ku\v{c}era, Lud\v{e}k},
title = {A shrinking of a category of societies is a universal partly ordered class},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {401--411},
year = {1971},
volume = {12},
number = {2},
mrnumber = {0289393},
zbl = {0234.18005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1971_12_2_a14/}
}
TY - JOUR AU - Kučera, Luděk TI - A shrinking of a category of societies is a universal partly ordered class JO - Commentationes Mathematicae Universitatis Carolinae PY - 1971 SP - 401 EP - 411 VL - 12 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMUC_1971_12_2_a14/ LA - en ID - CMUC_1971_12_2_a14 ER -
Kučera, Luděk. A shrinking of a category of societies is a universal partly ordered class. Commentationes Mathematicae Universitatis Carolinae, Tome 12 (1971) no. 2, pp. 401-411. http://geodesic.mathdoc.fr/item/CMUC_1971_12_2_a14/
[1] Z. HEDRLÍN: On universal partly ordered sets and classese. Journ. of Alg. 11, 4 (1969), 503-509. | MR
[2] P. HELL J. NEŠETŘIL: Graphs and k-societies. Canad. Math. Bulletin 13, 3 (1970), 375-381. | MR
[3] L. KUČERA: On universal concrete categories. to appear in Algebra Universalis 1 (1971). | MR