Note on the Fredholm alternative for nonlinear operators
Commentationes Mathematicae Universitatis Carolinae, Tome 12 (1971) no. 2, pp. 213-226 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 35J60, 45G99, 47-80, 47H15, 47J05
@article{CMUC_1971_12_2_a0,
     author = {Fu\v{c}{\'\i}k, Svatopluk},
     title = {Note on the {Fredholm} alternative for nonlinear operators},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {213--226},
     year = {1971},
     volume = {12},
     number = {2},
     mrnumber = {0288641},
     zbl = {0215.21201},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1971_12_2_a0/}
}
TY  - JOUR
AU  - Fučík, Svatopluk
TI  - Note on the Fredholm alternative for nonlinear operators
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1971
SP  - 213
EP  - 226
VL  - 12
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1971_12_2_a0/
LA  - en
ID  - CMUC_1971_12_2_a0
ER  - 
%0 Journal Article
%A Fučík, Svatopluk
%T Note on the Fredholm alternative for nonlinear operators
%J Commentationes Mathematicae Universitatis Carolinae
%D 1971
%P 213-226
%V 12
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1971_12_2_a0/
%G en
%F CMUC_1971_12_2_a0
Fučík, Svatopluk. Note on the Fredholm alternative for nonlinear operators. Commentationes Mathematicae Universitatis Carolinae, Tome 12 (1971) no. 2, pp. 213-226. http://geodesic.mathdoc.fr/item/CMUC_1971_12_2_a0/

[1] S. FUČÍK: Fredholm alternative for nonlinear operators in Banach spaces and its applications to the differential and integral equations. Comment. Math. Univ. Carolinae 11 (1970), 271-284 (preliminary communication). | MR

[1a] Same as 1 (to appear in Čas. Pěst. Mat).

[2] R. I. KAČUROVSKIJ: Regular points, spectrum and eigenfunctions of nonlinear operators. (Russian), Dokl. Akad. Nauk SSSR 188 (1969), 274-277. | MR

[3] M. A. KRASNOSELSKIJ: Topological methods in the theory of non-linear integral equations. Pergamon Press, N.Y. 1964.

[4] M. KUČERA: Fredholm alternative for nonlinear operators. Comment. Math. Univ. Carolinae 11 (1970), 337-363. | MR

[5] J. NEČAS: Sur l'alternative de Fredholm pour les opérateurs non linéaires avec applications aux problèmes aux limites. Annali Scuola Norm. Sup. Pisa, XXII (1969), 331-345. | MR | Zbl

[6] J. NEČAS: Remark on the Fredholm alternative for nonlinear operators with application to nonlinear integral equations of generalized Hammerstein type. (to appear). | MR

[7] W. V. PETRYSHYN: Nonlinear equations involving noncompact operators. Proceedings of Symposia in Pure Math., Vol. XVIII, Part 1, 206-233, Providence, R.I., 1970. | MR | Zbl

[8] S. I. POCHOŽAJEV: On the solvability of non-linear equations involving odd operators. Funct. Anal. and Appl. (Russian), 1 (1967), 66-73.

[9] M. M. VAJNBERG: Variational methods for the study of non-linear operators. Holden-Day, 1964.