@article{CMUC_1971_12_2_a0,
author = {Fu\v{c}{\'\i}k, Svatopluk},
title = {Note on the {Fredholm} alternative for nonlinear operators},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {213--226},
year = {1971},
volume = {12},
number = {2},
mrnumber = {0288641},
zbl = {0215.21201},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1971_12_2_a0/}
}
Fučík, Svatopluk. Note on the Fredholm alternative for nonlinear operators. Commentationes Mathematicae Universitatis Carolinae, Tome 12 (1971) no. 2, pp. 213-226. http://geodesic.mathdoc.fr/item/CMUC_1971_12_2_a0/
[1] S. FUČÍK: Fredholm alternative for nonlinear operators in Banach spaces and its applications to the differential and integral equations. Comment. Math. Univ. Carolinae 11 (1970), 271-284 (preliminary communication). | MR
[1a] Same as 1 (to appear in Čas. Pěst. Mat).
[2] R. I. KAČUROVSKIJ: Regular points, spectrum and eigenfunctions of nonlinear operators. (Russian), Dokl. Akad. Nauk SSSR 188 (1969), 274-277. | MR
[3] M. A. KRASNOSELSKIJ: Topological methods in the theory of non-linear integral equations. Pergamon Press, N.Y. 1964.
[4] M. KUČERA: Fredholm alternative for nonlinear operators. Comment. Math. Univ. Carolinae 11 (1970), 337-363. | MR
[5] J. NEČAS: Sur l'alternative de Fredholm pour les opérateurs non linéaires avec applications aux problèmes aux limites. Annali Scuola Norm. Sup. Pisa, XXII (1969), 331-345. | MR | Zbl
[6] J. NEČAS: Remark on the Fredholm alternative for nonlinear operators with application to nonlinear integral equations of generalized Hammerstein type. (to appear). | MR
[7] W. V. PETRYSHYN: Nonlinear equations involving noncompact operators. Proceedings of Symposia in Pure Math., Vol. XVIII, Part 1, 206-233, Providence, R.I., 1970. | MR | Zbl
[8] S. I. POCHOŽAJEV: On the solvability of non-linear equations involving odd operators. Funct. Anal. and Appl. (Russian), 1 (1967), 66-73.
[9] M. M. VAJNBERG: Variational methods for the study of non-linear operators. Holden-Day, 1964.