On solutions of nonautonomous linear delayed differential equations which are defined and bounded for $t \to - \infty$
Commentationes Mathematicae Universitatis Carolinae, Tome 12 (1971) no. 1, pp. 69-72 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34-75, 34K05, 34K25, 34K99
@article{CMUC_1971_12_1_a8,
     author = {Kurzweil, Jaroslav},
     title = {On solutions of nonautonomous linear delayed differential equations which are defined and bounded for $t \to - \infty$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {69--72},
     year = {1971},
     volume = {12},
     number = {1},
     mrnumber = {0282023},
     zbl = {0212.12201},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1971_12_1_a8/}
}
TY  - JOUR
AU  - Kurzweil, Jaroslav
TI  - On solutions of nonautonomous linear delayed differential equations which are defined and bounded for $t \to - \infty$
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1971
SP  - 69
EP  - 72
VL  - 12
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1971_12_1_a8/
LA  - en
ID  - CMUC_1971_12_1_a8
ER  - 
%0 Journal Article
%A Kurzweil, Jaroslav
%T On solutions of nonautonomous linear delayed differential equations which are defined and bounded for $t \to - \infty$
%J Commentationes Mathematicae Universitatis Carolinae
%D 1971
%P 69-72
%V 12
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1971_12_1_a8/
%G en
%F CMUC_1971_12_1_a8
Kurzweil, Jaroslav. On solutions of nonautonomous linear delayed differential equations which are defined and bounded for $t \to - \infty$. Commentationes Mathematicae Universitatis Carolinae, Tome 12 (1971) no. 1, pp. 69-72. http://geodesic.mathdoc.fr/item/CMUC_1971_12_1_a8/

[1] J. KURZWEIL: Invariant manifolds for flows, Differential equations and dynamical systems. Proceedings of an Internat. Symposium, Academic Press 1967, 431-468. | MR

[2] A. HALANAY J. KURZWEIL: A theory of invariant manifolds for flows. Revue Roumaine de mathématiques pures et appliquées, 13 (1968), 1079-1087. | MR

[3] J. KURZWEIL: Invariant manifolds I. Comm. Math. Univ. Carolinae 11 (1970), 309-336. | MR | Zbl