On solutions of nonautonomous linear delayed differential equations which are defined and bounded for $t \to - \infty$
Commentationes Mathematicae Universitatis Carolinae, Tome 12 (1971) no. 1, pp. 69-72
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{CMUC_1971_12_1_a8,
author = {Kurzweil, Jaroslav},
title = {On solutions of nonautonomous linear delayed differential equations which are defined and bounded for $t \to - \infty$},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {69--72},
year = {1971},
volume = {12},
number = {1},
mrnumber = {0282023},
zbl = {0212.12201},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1971_12_1_a8/}
}
TY - JOUR AU - Kurzweil, Jaroslav TI - On solutions of nonautonomous linear delayed differential equations which are defined and bounded for $t \to - \infty$ JO - Commentationes Mathematicae Universitatis Carolinae PY - 1971 SP - 69 EP - 72 VL - 12 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMUC_1971_12_1_a8/ LA - en ID - CMUC_1971_12_1_a8 ER -
%0 Journal Article %A Kurzweil, Jaroslav %T On solutions of nonautonomous linear delayed differential equations which are defined and bounded for $t \to - \infty$ %J Commentationes Mathematicae Universitatis Carolinae %D 1971 %P 69-72 %V 12 %N 1 %U http://geodesic.mathdoc.fr/item/CMUC_1971_12_1_a8/ %G en %F CMUC_1971_12_1_a8
Kurzweil, Jaroslav. On solutions of nonautonomous linear delayed differential equations which are defined and bounded for $t \to - \infty$. Commentationes Mathematicae Universitatis Carolinae, Tome 12 (1971) no. 1, pp. 69-72. http://geodesic.mathdoc.fr/item/CMUC_1971_12_1_a8/
[1] J. KURZWEIL: Invariant manifolds for flows, Differential equations and dynamical systems. Proceedings of an Internat. Symposium, Academic Press 1967, 431-468. | MR
[2] A. HALANAY J. KURZWEIL: A theory of invariant manifolds for flows. Revue Roumaine de mathématiques pures et appliquées, 13 (1968), 1079-1087. | MR
[3] J. KURZWEIL: Invariant manifolds I. Comm. Math. Univ. Carolinae 11 (1970), 309-336. | MR | Zbl