Comparability of Borel probability measures on euclidean line
Commentationes Mathematicae Universitatis Carolinae, Tome 11 (1970) no. 4, pp. 769-785 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 28-00, 28A10, 28Axx, 60-05, 60B05
@article{CMUC_1970_11_4_a9,
     author = {\v{C}ih\'ak, Pavel},
     title = {Comparability of {Borel} probability measures on euclidean line},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {769--785},
     year = {1970},
     volume = {11},
     number = {4},
     mrnumber = {0283836},
     zbl = {0242.28002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1970_11_4_a9/}
}
TY  - JOUR
AU  - Čihák, Pavel
TI  - Comparability of Borel probability measures on euclidean line
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1970
SP  - 769
EP  - 785
VL  - 11
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1970_11_4_a9/
LA  - en
ID  - CMUC_1970_11_4_a9
ER  - 
%0 Journal Article
%A Čihák, Pavel
%T Comparability of Borel probability measures on euclidean line
%J Commentationes Mathematicae Universitatis Carolinae
%D 1970
%P 769-785
%V 11
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1970_11_4_a9/
%G en
%F CMUC_1970_11_4_a9
Čihák, Pavel. Comparability of Borel probability measures on euclidean line. Commentationes Mathematicae Universitatis Carolinae, Tome 11 (1970) no. 4, pp. 769-785. http://geodesic.mathdoc.fr/item/CMUC_1970_11_4_a9/

[1] E. BISHOP, de LEEUW K.: The representation of linear functionals by measures on sets of extreme points. Ann. Inst. Fourier (Grenoble) 9 (1939), 305-331. | MR

[2] N. BOURBAKI: Integration. livre VI, Chap. 1-6, Paris 1959.

[3] P. ČIHÁK: Comparability and cond. maximality of measures supported by finite sets of real numbers. Comm. Math. Univ. Carolinae 10 (1969), 493-507. | MR

[4] P. ČIHÁK: On an exposed element of a set of doubly stochastic rect. matrices. Comm. Math. Univ. Carolinae 11 (1970), 99-113. | MR

[5] M. A. KRASNOSELSKIJ B. RUTICKIJ: Vypuklye funkcii i prostranstva Orliča. Moskva 1958.

[6] R. R. PHELPS: Lectures on Choquet's theorem. New York 1966. | Zbl

[7] A. I. TULCEA C. I. TULCEA: Topics in the theory of lifting. New York 1969. | MR