Approximation by Hill functions
Commentationes Mathematicae Universitatis Carolinae, Tome 11 (1970) no. 4, pp. 787-811 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 41A65, 46E35, 65N05, 65Nxx
@article{CMUC_1970_11_4_a10,
     author = {Babu\v{s}ka, Ivo},
     title = {Approximation by {Hill} functions},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {787--811},
     year = {1970},
     volume = {11},
     number = {4},
     mrnumber = {0292309},
     zbl = {0215.46404},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1970_11_4_a10/}
}
TY  - JOUR
AU  - Babuška, Ivo
TI  - Approximation by Hill functions
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1970
SP  - 787
EP  - 811
VL  - 11
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1970_11_4_a10/
LA  - en
ID  - CMUC_1970_11_4_a10
ER  - 
%0 Journal Article
%A Babuška, Ivo
%T Approximation by Hill functions
%J Commentationes Mathematicae Universitatis Carolinae
%D 1970
%P 787-811
%V 11
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1970_11_4_a10/
%G en
%F CMUC_1970_11_4_a10
Babuška, Ivo. Approximation by Hill functions. Commentationes Mathematicae Universitatis Carolinae, Tome 11 (1970) no. 4, pp. 787-811. http://geodesic.mathdoc.fr/item/CMUC_1970_11_4_a10/

[1] D. C. ZIENKIEWICZ: The finite element method in structural and continuum mechanics. London, McGraw-Hill, 1967. | Zbl

[2] M. ZLÁMAL: On the Finite Element Method. Num. Math. 12 (1968), 394-409. | MR

[3] G. BIRKHOFF M. H. SCHULZ R. S. VARGA: Piecewise Hermite interpolation in one and two variables with applications to partial differential equations. Num. Math. 11 (1968), 232-256. | MR

[4] I. BABUŠKA: Error-Bounds for Finite Element Method. Technical Note BN-630, Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, November 1969. | MR

[5] I. BABUŠKA: Numerical Solution of Boundary Value Problems bv the Perturbed Variational Principle. Technical Note BN-626, Institute for Bluid Dynamics and Applied Mathematics, University of Maryland, October 1969.

[6] I. BABUŠKA: The finite element method for elliptic equationa with discontinuous coefficients. Technical Note BN-631, Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, December 1969. | MR

[7] I. BABUŠKA: Finite element method for domains with corners. Technical Note BN-636, Institute for Fluid. Dyaamics and Applied Mathematics, University of Maryland, January 1970. | MR

[8] I. BABUŠKA: The rate of convergence for the finite element method. Tech. Note BN-646, University of Maryland, Institute for Fluid Dynamics and Applied Mathematics. March 1970. | MR

[9] I. BABUŠKA: Computation of derivatives in the finite element method. Tech. Note BN-650, University of Maryland, Institute for Fluid Dynamics and Applied Mathematics. April 1970. CMUC 1970, 545-558. | MR

[10] I. BABUŠKA: The finite element method for elliptic differential equations. Tech. Note BN-653, University of Maryland, Institute for Fluid Dynamics and Applied Mathematics. May 1970 .

[11] I. BABUŠKA J. SEGETHOVÁ K. SEGETH: Numerical experiments with finite element method I. Tech. Note BN-669, University of Maryland, Institute for Fluid Dynamics and Applied Mathematics. August 1970.

[12] I. BABUŠKA: The finite element method for infinite domains I. Tech Note BN-670, University of Maryland Institute for Fluid Dynamics and Aplied Mathematica, August 1970.

[13] I. BABUŠKA: Numerical stability of finite element method. To appear.

[14] J. SEGETHOVÁ: Numerical construction of the hill functions. Tech. Ref. 70-110-NGL-21-002-008, 1970, University of Maryland, Comp. Science Center.

[15] K. SEGETH: Problems of universal Approximation by Hill Functions. Tech. Note BN-619, 1970, University of Maryland, Institute for Fluid Dynamics and Applied Mathematics.

[16] K. YOSIDA: Functional analysis. New York Academic Press, 1965. | MR | Zbl

[17] I. M. GEL'FAND G. M. SHILOV: Generalized functions. (translated from Russian), Vol. 1, Vol. 2, Academic Press, New York - London.

[18] G. FIX G. STRANG: Fourier analysis of the finite element method in Ritz-Galerkin Theory. Studies in Applied Math, 48 (1969), 265-273. | MR

[19] G. STRANG G. FIX: A Fourier analysis of the finite element variational method. To appear.

[20] F. D. GUGLIELMO: Construction d'approximations des espaces de Sobolev sur des riseaux en simplexes. Calcolo, Vol. 6 (1969), 279-331. | MR

[21] G. STRANG: The finite element method and approximation theory. To appear. | MR | Zbl