Computation of derivatives in the finite element method
Commentationes Mathematicae Universitatis Carolinae, Tome 11 (1970) no. 3, pp. 545-558 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 65-66, 65Jxx, 65N30
@article{CMUC_1970_11_3_a10,
     author = {Babu\v{s}ka, Ivo},
     title = {Computation of derivatives in the finite element method},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {545--558},
     year = {1970},
     volume = {11},
     number = {3},
     mrnumber = {0275694},
     zbl = {0219.65089},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1970_11_3_a10/}
}
TY  - JOUR
AU  - Babuška, Ivo
TI  - Computation of derivatives in the finite element method
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1970
SP  - 545
EP  - 558
VL  - 11
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_1970_11_3_a10/
LA  - en
ID  - CMUC_1970_11_3_a10
ER  - 
%0 Journal Article
%A Babuška, Ivo
%T Computation of derivatives in the finite element method
%J Commentationes Mathematicae Universitatis Carolinae
%D 1970
%P 545-558
%V 11
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_1970_11_3_a10/
%G en
%F CMUC_1970_11_3_a10
Babuška, Ivo. Computation of derivatives in the finite element method. Commentationes Mathematicae Universitatis Carolinae, Tome 11 (1970) no. 3, pp. 545-558. http://geodesic.mathdoc.fr/item/CMUC_1970_11_3_a10/

[1] M. ZLÁMAL: On the finite element method. Num. Math. 12 (1968), 394-409. | MR

[2] J. P. AUBIN: Behavior of the error of the approximate solutions of boundary value problems for linear elliptic operators by Galerkin's and finite difference methods. Ann. Scuola Norm. Pisa XXI (1967), 559-637.

[3] P. G. CIARLET M. H. SCHULTZ R. S. VARGA: Numerical methods of high-order accuracy for nonlinear boundary value problems I. One dimens. Mum. Math. 9 (1967), 394-430. | MR

[4] M. H. SCHULTZ: $L^2$ - multivariate approximation theory. SIAM J. Num. Anal. vol. 6, No. 2 (June 1969), 184-209. | MR | Zbl

[5] M. H. SCHULTZ: $L^\infty$ -multivariate approximation theory. SIAM J. Num. Anal. vol. 6, no. 2 (June 1969), 161-183. | MR | Zbl

[6] J. H. BRAMBLE M. ZLÁMAL: Triangular elements in the finite element method. To appear. | MR | Zbl

[7] O. C. ZIENKIEWICZ: The finite element method in structural and continuum mechanics. London, McGraw Hill 1967. | Zbl

[8] Y. R. RASHID: On computational methods in solid mechanics and stress analysis. Conf. on the Effective Use of Comp. in the nuclear industry April 21-23, 1969 Knowville.

[9] L. A. OGANESJAN L. A. RUCHOVEC: Variational difference schemes for second order linear elliptic equations in a two dimensional region with a piecewise smooth boundary. (Russ.) Ž. Vyčisl. Mat. i Mat. Fiz. 8 (1968), 97-114. | MR

[10] L. A. OGANESJAN L. A. RUCHOVEC: A study of the rates of convergence of some variational-difference schemes for elliptic equations of second order in a two dimensional domain with smooth boundary. (Russian.) Ž. Vyčisl. Mat. i Mat. Fiz. 9 (1969), 1102-1119. | MR

[11] J. NITSCHE: Lineare Spline Funktionen und die Methode von Ritz für elliptische Randwertprobleme. To appear. | MR

[12] I. BABUŠKA: Error-Bounds for finite element method. Tech. Note BN-630, University of Maryland, Institute for Fluid Dynamics and Applied Mathematics, November 1969. | MR

[13] I. BABUŠKA: Numerical solution of boundary value problems by the perturbed variational principle. Tech. Note BN-624, University of Maryland, Institute for Fluid Dynamics and Applied Mathematics, October 1969.

[14] I. BABUŠKA: The finite element method for elliptic equationa with discontinuous coefficients. Tech. Note BN-631, University of Maryland, Institute for Fluid. Dynamics and Applied Mathematics, Dec. 1969.

[15] I. BABUŠKA: Finite element method for domains with corners. Tech. Note BN-636, University of Maryland, Inst. for Fluid Dynamics and Applied Mathematics, January 1970.

[16] I. BABUŠKA: The rate of convergence for the finite element method. Technical Note BN-646, University of Maryland, Inst. for Fluid. Dynamics and Applied Mathematics, March 1970. | MR

[17] I. BABUŠKA: Approximation by hill functions. Tech. Note BN-648, Univ. of Maryland, Inst. for Fluid Dynamics and Applied Mathematics, March 1970.

[18] K. YOSIDA: Functional analysis. New York, Academic Press 1965. | MR | Zbl

[19] I. M. GELFAND G. M. SHILOV: Generalized functions. (translated from Russian), Vol. 1, Vol. 2. Academic Press, New York - London.

[20] J. SEGETHOVÁ: Numerical construction of the hill functions. Tech. Rep. 70-110-NGL-21-002-008, University of Maryland, Computer Science Center, April 1970.

[21] H. ARONSZAJN: Boundary value of functions with finite Dirichlet integral. Conf. on Part. Diff. Equa. No. 14, University of Kansas 1955.

[22] M. I. SLOBODECKIJ: Generalized Sobolev spaces and other application to boundary problems for partial differential equations. Leningrad. Gos. Univ. 97 (1958), 54-112. | MR

[23] J. L. LIONS E. MAGENES: Problèmes aux limites non homogènes et applications. Vol. 1, Dunod 1968. | MR

[24] E. STEIN: Lectures Notes. Orsay 66/67.

[25] Jaok PEETRE: Applications de la théorie des espaces d'interpolation dans l'analyse harmonique. Ricerche Mat. 15 (1966), 3-36. | MR