Invariant manifolds. I
Commentationes Mathematicae Universitatis Carolinae, Tome 11 (1970) no. 2, pp. 309-336 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34C35, 57D40, 58Axx
@article{CMUC_1970_11_2_a7,
     author = {Kurzweil, Jaroslav},
     title = {Invariant manifolds. {I}},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {309--336},
     year = {1970},
     volume = {11},
     number = {2},
     mrnumber = {0296963},
     zbl = {0197.47702},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1970_11_2_a7/}
}
TY  - JOUR
AU  - Kurzweil, Jaroslav
TI  - Invariant manifolds. I
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1970
SP  - 309
EP  - 336
VL  - 11
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1970_11_2_a7/
LA  - en
ID  - CMUC_1970_11_2_a7
ER  - 
%0 Journal Article
%A Kurzweil, Jaroslav
%T Invariant manifolds. I
%J Commentationes Mathematicae Universitatis Carolinae
%D 1970
%P 309-336
%V 11
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1970_11_2_a7/
%G en
%F CMUC_1970_11_2_a7
Kurzweil, Jaroslav. Invariant manifolds. I. Commentationes Mathematicae Universitatis Carolinae, Tome 11 (1970) no. 2, pp. 309-336. http://geodesic.mathdoc.fr/item/CMUC_1970_11_2_a7/

[1] N. LEVINSON: Small periodic perturbations of an autonomous system with a stable orbit. Ann. of Math. 52 (1950), 727-739. | MR | Zbl

[2] N. N. BOGOLJUBOV, Yu. A. MITROPOLSKIJ: Asymptotic methods in the theory of nonlinear oscillations. (Russian), Moscow 1955 (rev. 1958).

[3] W. T. KYNER: Invariant manifolds. Rend. del Circ. Mat. Palermo, Ser. II, 9 (1961), 98-110. | MR | Zbl

[4] J. K. HALE: Integral manifolds of perturbed differential systems. Ann. of Math. 73 (1961), 496-531. | MR | Zbl

[5] F. S. DILIBERTO: Perturbation theorems for periodic surfaces I, II. Rend. del Circ. Mat. Palermo, Ser. II, 9 (1961), 265-299, 10 (1962), 111-162.

[6] I. KUPKA: Stability des variétés invariantes d'un champ de vecteurs pour les petites perturbations. C. R. Acad. Sci. Paris, 258 Groupe 1 (1964), 4197-4200. | MR

[7] R. J. SACKER: A perturbation theorem for invariant Riemannian manifolds. Differential equations and dynamical systems, Proceedings of an International Symposium, Academic Press 1967, pp. 43-54. | MR | Zbl

[8] J. KURZWEIL: Invariant manifolds for flows, Differential equations and dynamical systems. Proceedings of an Internat. Symposium, Academic Press 1967, pp. 431-468. | MR

[9] J. JARNÍK J. KURZWEIL: On invariant sets and invariant manifolds of differential systems. Journ. Diff. Equat. 6 (1969), 247-263. | MR