Fredholm alternative for nonlinear operators in Banach spaces and its applications to the differential and integral equations (Preliminary communication)
Commentationes Mathematicae Universitatis Carolinae, Tome 11 (1970) no. 2, pp. 271-284 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 47-80, 47Hxx
@article{CMUC_1970_11_2_a5,
     author = {Fu\v{c}{\'\i}k, Svatopluk},
     title = {Fredholm alternative for nonlinear operators in {Banach} spaces and its applications to the differential and integral equations {(Preliminary} communication)},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {271--284},
     year = {1970},
     volume = {11},
     number = {2},
     mrnumber = {0266000},
     zbl = {0195.42801},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1970_11_2_a5/}
}
TY  - JOUR
AU  - Fučík, Svatopluk
TI  - Fredholm alternative for nonlinear operators in Banach spaces and its applications to the differential and integral equations (Preliminary communication)
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1970
SP  - 271
EP  - 284
VL  - 11
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1970_11_2_a5/
LA  - en
ID  - CMUC_1970_11_2_a5
ER  - 
%0 Journal Article
%A Fučík, Svatopluk
%T Fredholm alternative for nonlinear operators in Banach spaces and its applications to the differential and integral equations (Preliminary communication)
%J Commentationes Mathematicae Universitatis Carolinae
%D 1970
%P 271-284
%V 11
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1970_11_2_a5/
%G en
%F CMUC_1970_11_2_a5
Fučík, Svatopluk. Fredholm alternative for nonlinear operators in Banach spaces and its applications to the differential and integral equations (Preliminary communication). Commentationes Mathematicae Universitatis Carolinae, Tome 11 (1970) no. 2, pp. 271-284. http://geodesic.mathdoc.fr/item/CMUC_1970_11_2_a5/

[1] F. E. BROWDER D. G. de FIGUEIREDO: J-monotone nonlinear operators in Banach spaces. Konkl. Nederl. Acad. Wetensch. 69 (1966), 412-420. | MR

[2] F. E. BROWDER W. V. PETRYSHYN: The topological degree and Galerkin approximations for noncompact operators in Banach spaces. Bull. Amer. Math. Soc. 74 (1968), 641-646. | MR

[3] J. CRONIN: Fixed points and topological degree in nonlinear analysis. Amer. Math. Soc. 1964, Providence, R. I. | MR | Zbl

[4] N. DUNFORD J. T. SCHWARTZ: Linear Operators I. (Russian), Moscow 1962. | MR

[5] D. G. de FIGUEIREDO: Fixed point theorems for nonlinear operators and Galerkin approximations. Journ. Diff. Eq. 3 (1967), 271-281. | MR | Zbl

[6] D. G. de FIGUEIREDO: Some remarks on fixed point theorems for nonlinear operators in Banach spaces. Lecture Series, Univ. of Maryland, 1967. | Zbl

[7] D. G. de FIGUEIREDO: Topics in nonlinear analysis. Lecture Series, Univ. of Maryland, 1967.

[8] M. A. KRASNOSELSKIJ: Topological methods in the theory of nonlinear integral equations. (Russian), Moscow 1956.

[9] M. A. KRASNOSELSKIJ J. B. RUTICKIJ: Convex functions and Orlicz' spaces. (Russian), Moscow 1958.

[10] E. A. MICHAEL A. PELCZYNSKI: Separable Banach spaces which admit $l\sb{n}{}\sp{\infty }$ -approximations. Israel Math. J. (1966), 189-198. | MR

[11] J. NEČAS: Sur l'alternative de Fredholm pour les opérateurs non-linéaires avec applications aux problèmes aux limites. Ann. Scuola Norm. Sup. Pisa XIII (1969), 331-345. | MR | Zbl

[12] W. V. PETRYSHYN: On a fixed point theorem for nonlinear P-compact operators in Banach space. Bull. Amer. Math. Soc. 72 (1966), 329-334. | MR | Zbl

[13] W. V. PETRYSHYN: Remarks on the approximation-solvability of nonlinear functional equations. Arch. Rat. Mech. Anal. 26 (1967), 43-49. | MR | Zbl

[14] W. V. PETRYSHYN: On the approximation-solvability of nonlinear equations. Math. Ann. 177 (1968), 156-164. | MR | Zbl

[15] S. I. POCHOŽAJEV: On the solvability of nonlinear equations with odd operators. (Russian), Funkcional. anal. i ego přilož. 1 (1967), 66-73. | MR

[16] S. I. POCHOŽAJEV: O množestve kritičeskich značenij funkcionalov. Mat. sbornik 75 (1968), 106-111.

[17] S. SCHONEFELD: Schauder bases in spaces of differentiable functions. Bull. Amer. Math. Soc. 75 (1969), 586-590. | MR | Zbl

[18] M. M. VAJNBERG: Variacionnyje metody issledovanija nelinejnych operatorov. Moskva 1956.