The minimum existence of functional $\int_a^b F( x(t), y(t), \dot{x}(t), \dot{y}(t) ) dt$
Commentationes Mathematicae Universitatis Carolinae, Tome 11 (1970) no. 2, pp. 205-225
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{CMUC_1970_11_2_a1,
author = {Sou\v{c}ek, Vladim{\'\i}r},
title = {The minimum existence of functional $\int_a^b F( x(t), y(t), \dot{x}(t), \dot{y}(t) ) dt$},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {205--225},
year = {1970},
volume = {11},
number = {2},
mrnumber = {0270246},
zbl = {0197.41702},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1970_11_2_a1/}
}
TY - JOUR
AU - Souček, Vladimír
TI - The minimum existence of functional $\int_a^b F( x(t), y(t), \dot{x}(t), \dot{y}(t) ) dt$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1970
SP - 205
EP - 225
VL - 11
IS - 2
UR - http://geodesic.mathdoc.fr/item/CMUC_1970_11_2_a1/
LA - en
ID - CMUC_1970_11_2_a1
ER -
Souček, Vladimír. The minimum existence of functional $\int_a^b F( x(t), y(t), \dot{x}(t), \dot{y}(t) ) dt$. Commentationes Mathematicae Universitatis Carolinae, Tome 11 (1970) no. 2, pp. 205-225. http://geodesic.mathdoc.fr/item/CMUC_1970_11_2_a1/
[1] JARNÍK: Integrální počet II. Praha 1955.
[2] ACHIEZER: Lekcii po variacionnomu izčisleniju. Moskva 1955.