Order of holonomy and geometric objects of manifolds with connection
Commentationes Mathematicae Universitatis Carolinae, Tome 10 (1969) no. 4, pp. 559-565 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 53-42, 53-50, 57Nxx
@article{CMUC_1969_10_4_a1,
     author = {Kol\'a\v{r}, Ivan},
     title = {Order of holonomy and geometric objects of manifolds with connection},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {559--565},
     year = {1969},
     volume = {10},
     number = {4},
     mrnumber = {0264539},
     zbl = {0194.53601},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1969_10_4_a1/}
}
TY  - JOUR
AU  - Kolář, Ivan
TI  - Order of holonomy and geometric objects of manifolds with connection
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1969
SP  - 559
EP  - 565
VL  - 10
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1969_10_4_a1/
LA  - en
ID  - CMUC_1969_10_4_a1
ER  - 
%0 Journal Article
%A Kolář, Ivan
%T Order of holonomy and geometric objects of manifolds with connection
%J Commentationes Mathematicae Universitatis Carolinae
%D 1969
%P 559-565
%V 10
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1969_10_4_a1/
%G en
%F CMUC_1969_10_4_a1
Kolář, Ivan. Order of holonomy and geometric objects of manifolds with connection. Commentationes Mathematicae Universitatis Carolinae, Tome 10 (1969) no. 4, pp. 559-565. http://geodesic.mathdoc.fr/item/CMUC_1969_10_4_a1/

[1] M. F. ATIYAH: K-theory. (Russian translation). Moscow 1967. | Zbl

[2] C. EHRESMANN: Les connexions infinitésimales dans un espace fibré différentiable. Colloque de Topologie-Bruxelles 1950, 29-55. | MR

[3] C. EHRESMANN: Extension du calcul des jets aux jets non-holonomes. CRAS Paris 239 (1954), 1762-1764. | MR | Zbl

[4] C. EHRESMANN: Sur les connexions d'ordre supérieur. Atti del V° Congresso dell'Unione Matematica Italiana. Roma 1955, 344-346.

[5] I. KOLÁŘ: On the Order of Holonomy of a Surface with Projective Connection. To appear in Arch. Math. Brno. | MR

[6] G. F. LAPTĚV: Differential Geometry of Imbedded Manifolds. (Russian). Trudy Moskov. Mat. 0bšč. Vyp. 2 (1953), 275-382. | MR

[7] A. ŠVEC: Cartan's Method of Specialization of Frames. Czechoslovak Math. J. 16 (91) (1966), 552-599. | MR | Zbl