Comparability and conditional maximality of measures supported by finite sets of real numbers
Commentationes Mathematicae Universitatis Carolinae, Tome 10 (1969) no. 3, pp. 493-507 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 15A51, 28-00, 28Axx, 60-05, 60Bxx
@article{CMUC_1969_10_3_a8,
     author = {\v{C}ih\'ak, Pavel},
     title = {Comparability and conditional maximality of measures supported by finite sets of real numbers},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {493--507},
     year = {1969},
     volume = {10},
     number = {3},
     mrnumber = {0287592},
     zbl = {0256.15015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1969_10_3_a8/}
}
TY  - JOUR
AU  - Čihák, Pavel
TI  - Comparability and conditional maximality of measures supported by finite sets of real numbers
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1969
SP  - 493
EP  - 507
VL  - 10
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_1969_10_3_a8/
LA  - en
ID  - CMUC_1969_10_3_a8
ER  - 
%0 Journal Article
%A Čihák, Pavel
%T Comparability and conditional maximality of measures supported by finite sets of real numbers
%J Commentationes Mathematicae Universitatis Carolinae
%D 1969
%P 493-507
%V 10
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_1969_10_3_a8/
%G en
%F CMUC_1969_10_3_a8
Čihák, Pavel. Comparability and conditional maximality of measures supported by finite sets of real numbers. Commentationes Mathematicae Universitatis Carolinae, Tome 10 (1969) no. 3, pp. 493-507. http://geodesic.mathdoc.fr/item/CMUC_1969_10_3_a8/

[1] N. BOURBAKI: Espaces vectoriels topologiques. Paris. | Zbl

[2] P. CARTIER J. FELL P. A. MEYER: Comparaison des measures portées par un ensemble convexe compact. Bull. Soc. Math. France 92 (1964), 435-445. | MR

[3] P. ČIHÁK: On an exposed element of a set of doublystochastic rectangular matrices. to appear in Comment. Math. Univ. Carolinae.

[4] G. CHOQUET P. A. MEYER: Existence et unicité des representations intégrals dans les convexes compacts quelconques. Ann. Inst. Fourier (Grenoble) 13 (1963), 139-154. | MR

[5] F. A. VALENTINE: Convex sets. New York 1964, 15-25. | MR | Zbl

[6] R. R. PHELPS: Lectures on Choquet's theorem. Van Nostrand, New York, 1966. | MR | Zbl