A continuous geometry as a mathematical model for quantum mechanics
Commentationes Mathematicae Universitatis Carolinae, Tome 10 (1969) no. 2, pp. 217-236 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 06-00, 81-06, 81Bxx, 81Q99
@article{CMUC_1969_10_2_a6,
     author = {Duckenfield, Christopher J.},
     title = {A continuous geometry as a mathematical model for quantum mechanics},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {217--236},
     year = {1969},
     volume = {10},
     number = {2},
     mrnumber = {0250573},
     zbl = {0208.27702},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1969_10_2_a6/}
}
TY  - JOUR
AU  - Duckenfield, Christopher J.
TI  - A continuous geometry as a mathematical model for quantum mechanics
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1969
SP  - 217
EP  - 236
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1969_10_2_a6/
LA  - en
ID  - CMUC_1969_10_2_a6
ER  - 
%0 Journal Article
%A Duckenfield, Christopher J.
%T A continuous geometry as a mathematical model for quantum mechanics
%J Commentationes Mathematicae Universitatis Carolinae
%D 1969
%P 217-236
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1969_10_2_a6/
%G en
%F CMUC_1969_10_2_a6
Duckenfield, Christopher J. A continuous geometry as a mathematical model for quantum mechanics. Commentationes Mathematicae Universitatis Carolinae, Tome 10 (1969) no. 2, pp. 217-236. http://geodesic.mathdoc.fr/item/CMUC_1969_10_2_a6/

[1] G. MACKEY: Mathematical Foundations of Quantum Mechanics. Benjamin, 1961.

[2] I. KAPLANSKY: Any orthocomplemented complete modular lattice is a continuous geometry. Ann. Math., 1955, 61, 524-541. | MR | Zbl

[3] C. DUCKENFIELD: Eigenvalues in continuous rings. submitted to Acta sci. math.

[4] J. von NEUMANN: Continuous geometry. Proc. Nat. Acad. Sci., U. S. A., 22 (1936), 92-100. | Zbl

[5] J. von NEUMANN: Examples of continuous geometries. Proc. Nat. Acad. Sci., U. S. A., 22 (1936), 101-108. | Zbl

[6] J. von NEUMANN: On regular rings. Proc. Nat. Acad. Sci., U. S. A., 22 (1936), 707-713. | Zbl

[7] J. von NEUMANN: Algebraic theories of continuous geometries. Proc. Nat. Acad. Sci., U. S. A., 23 (1937), 16-22.

[8] J. von NEUMANN: Continuous rings and their arithmetics. Proc. Nat. Acad. Sci., U. S. A., 23 (1937), 341-349. | Zbl

[9] J. von NEUMANN: Continuous Geometry. Princeton 1960. | MR | Zbl

[10] L. SKORNYAKOV: Complemented Modular Lattices and Regular Rings. Oliver and Boyd, 1964. | MR | Zbl

[11] P. HALMOS: Measure Theory. Van Nostrand, 1962. | MR

[12] F. MAEDA: Kontinuierliche Geometrien. Sp. - Verlag, 1958. | MR