@article{CMUC_1969_10_2_a2,
author = {Fu\v{c}{\'\i}k, Svatopluk},
title = {Solving of nonlinear operators{\textquoteright} equations in {Banach} space},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {177--188},
year = {1969},
volume = {10},
number = {2},
mrnumber = {0257829},
zbl = {0188.20901},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1969_10_2_a2/}
}
Fučík, Svatopluk. Solving of nonlinear operators’ equations in Banach space. Commentationes Mathematicae Universitatis Carolinae, Tome 10 (1969) no. 2, pp. 177-188. http://geodesic.mathdoc.fr/item/CMUC_1969_10_2_a2/
[1] M. ALTMAN: A Fixed-Point Theorem in Hilbert Space. Bull. Acad. Pol. Sci. V (1957), 19-22. | MR | Zbl
[2] M. ALTMAN: Fixed Point Theorems in Banach space. Bull. Acad. Pol. Sci. V(1957), 89-92. | MR
[3] M. ALTMAN: On Linear Functional Equations in Hilbert Space. Bull. Acad. Pol. Sci. V (1957), 223-226. | MR
[4] F. E. BROWDER: Problèmes Non-linéaires. Les Presses de l'Université de Montréal (1966). | Zbl
[5] F. E. BROWDER: Nonlinear Mappings of Nonexpansive and Accretive Type in Banach Space. Bull. Am. Math. Soc. 73 (1967), 875-882. | MR
[6] F. E. BROWDER D. G. de FIGUEIREDO: $J$-monotone Nonlinear Operators in Banach Spaces. Konkl. Nederl. Acad. Watensch. 69 (1966), 412-420. | MR
[7] D. G. de FIGUEIREDO: Fixed-Point Theorems for Nonlinear Operators and Galerkin Approximations. Journal Diff. Eq. 3 (1967), 271-281. | MR | Zbl
[8] D. G. de FIGUEIREDO: Some Remarks on Fixed Point Theorems for Nonlinear Operators in Banach Spaces. Lecture Series, University of Maryland, 1967. | Zbl
[9] D. G. de FIGUEIREDO: Topics in Nonlinear Functional Analysis. Lecture Series, University of Maryland, 1967.
[10] S. FUČÍK: Fixed Point Theorems Based on Leray-Schauder Degree. Comment. Math. Univ. Carolinae 8 (1967), 683-690. | MR
[11] S. FUČÍK: Fixed Point Theorems for Sum of Nonlinear Mappings. Comment. Math. Univ. Carolinae 9 (1968), 133-143. | MR
[12] A. GRANAS: Ob odnom klasse nelinejnych otobraženij v banachovych prostranatvach. Bull. Acad. Pol. Sci. V (1957), 867-872. | MR
[13] R. I. KAČUROVSKIJ M. A. KRASNOSELSKIJ P. P. ZABREJKO: Ob odnom principe nepodvižnoj točki dlja operatorov v gilbertovom prostranstve. Funkcionalnyj analiz i evo priloženija 1 (1967), 93-94.
[14] J. KOLOMÝ: Some Existence Theorems for Nonlinear Problems. Comment. Math. Univ. Carolinae 7 (1966), 207-217. | MR
[15] M. A. KRASNOSELSKIJ P. P. ZABREJKO: Ob odnom principe polučenija novych principov nepodvižnoj točki. Doklady Ak. Nauk SSSR 176 (1967), 1223-1225.
[16] M. Z. NASHED J. S. W. WONG: Some Variants of a Fixed Point Theorem of Krasnoselskii and Applications to Nonlinear Equations. Technical Summary Report, The University of Wisconsin, 1967.
[17] E. ROTHE: Zur Theorie der Topologischen Ordnung und der Vectorfelder in Banachschen Räumen. Compos. Math. 5 (1937), 177-197.
[18] M. SHINBROT: A Fixed Point Theorem and Some Applications. Arch. Rat. Mech. Anal. 17 (1965), 255-271. | MR
[19] W. V. PETRYSHYN: Further Remarks on Nonlinear $P$ - Compact Operators in Banach Space. Jour. Math. Anal. Appl. 16 (1966), 243-253. | MR | Zbl