@article{CMUC_1969_10_2_a10,
author = {Bur\'y\v{s}ek, Slavom{\'\i}r},
title = {Some remarks on polynomial operators},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {285--306},
year = {1969},
volume = {10},
number = {2},
mrnumber = {0251560},
zbl = {0176.12402},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1969_10_2_a10/}
}
Burýšek, Slavomír. Some remarks on polynomial operators. Commentationes Mathematicae Universitatis Carolinae, Tome 10 (1969) no. 2, pp. 285-306. http://geodesic.mathdoc.fr/item/CMUC_1969_10_2_a10/
[1] J. ALBRYCHT: On a theorem of Saks for abstract polynomials. Studia Math. XIV, 1 (1953), 79-81. | MR | Zbl
[2] A. ALEXIEWICZ, W. ORLICZ: Analytic operations in real Banach spaces. Studia Math. XIV, 1 (1953), 53-78. | MR | Zbl
[3] S. BANACH: Über homogene Polynome in $L_2$. Studia Math. VII (1938), 36-44. | Zbl
[4] E. J. ECKERT: Positive eigenvectors of positive polynomial operators on Banach spaces. Michigan Math. J. 12 (1965), 487-491. | MR | Zbl
[5] M. FRÉCHET: Les polynomes abstraites. J. Math. pures appl. (9) 8 (1929), 71-92.
[6] M. FRÉCHET: Une definition fonctionnelle des polynomes. Nouv. Ann. Math. 9 (1929), 145-161.
[7] I. E. HIGBERG: Polynomials in abstract spaces. California Inst. Techn. Theses (1946).
[8] E. HILLE, R. S. PHILLIPS: Functional analysis and semi-groups. Providence 1957. | MR
[9] R. I. KAČUROVSKIJ: On monotone operators and convex functionals. Uspehi Mat. Nauk 15, No 4 (1960), 213-215.
[10] J. KOLOMÝ: On the differentiability of mappings and convex functionals. Comment. Math. Univ. Caroline 8 (1967), 735-752. | MR
[11] KOPEC', MUSIELAK: On the estimation of the norm of the n-linear symmetric operation. Studia Math. XV (1955), 29-30. | MR | Zbl
[12] L. A. LJUSTERNIK, V. I. SOBOLEV: Elements of functional analysis. Moscow 1965. | MR
[1З] K. MAURIN: Metody przestrzeni Hilberta. Warszawa 1959. | MR | Zbl
[14] S. MAZUR, W. ORLICZ: Grundlege Eigenschaften der polynomischen Operationen. Studia Math. V (1935), 50-68; 179-189. | MR
[15] M. M. VAJNBERG: Variational methods in the theory of non-linear operators. Moscow 1956.
[16] T. L. HAYDEN: The extension of bilinear functionals. Pacific J. Math. Vol. 22, No. 1 (1967), 99-108. | MR | Zbl