On $B$-spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 9 (1968) no. 4, pp. 651-658 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 04-40, 28-00, 54Hxx
@article{CMUC_1968_9_4_a14,
     author = {Frol{\'\i}k, Zden\v{e}k},
     title = {On $B$-spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {651--658},
     year = {1968},
     volume = {9},
     number = {4},
     mrnumber = {0252231},
     zbl = {0183.51302},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1968_9_4_a14/}
}
TY  - JOUR
AU  - Frolík, Zdeněk
TI  - On $B$-spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1968
SP  - 651
EP  - 658
VL  - 9
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1968_9_4_a14/
LA  - en
ID  - CMUC_1968_9_4_a14
ER  - 
%0 Journal Article
%A Frolík, Zdeněk
%T On $B$-spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1968
%P 651-658
%V 9
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1968_9_4_a14/
%G en
%F CMUC_1968_9_4_a14
Frolík, Zdeněk. On $B$-spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 9 (1968) no. 4, pp. 651-658. http://geodesic.mathdoc.fr/item/CMUC_1968_9_4_a14/

[1] E. ČECH: Topological Spaces. Academia, Praha 1966 | MR

[2] G. CHOQUET: Ensembles K-analytic and K-Souslin. Ann. Inst. Fourier 9 (1959), 77-81. | MR

[3] Z. FROLÍK: A contribution to the descriptive theory of sets and spaces. General Topology and its Relations to Modern Analysis and Algebra (Proc. Symp. Prague, Sept. 1961, pp. 157-173) New York Academic Press. | MR

[4] Z. FROLÍK: On the descriptive theory of sets. Czech. Math. J. 13, 335-359 (1963). | MR

[5] Z. FROLÍK: A survey of separable descriptive theory of sets and spaces. Conf. Sem. Anal. Math., Bari. To appear. | MR

[6] Z. FROLÍK: A note on Souslin operation. Comment. Math. Univ. Carolinae 9 (1968), 641-650. | MR

[7] C. A. ROGERS: Descriptive Borel sets. Proc. Roy. Soc. A 286, 455-478 (1965). | MR | Zbl