Concerning minimal primitive classes of algebras containing any category of algebras as a full subcategory
Commentationes Mathematicae Universitatis Carolinae, Tome 9 (1968) no. 4, pp. 627-635 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 08-30, 08Axx, 18-00
@article{CMUC_1968_9_4_a11,
     author = {Sichler, Ji\v{r}{\'\i}},
     title = {Concerning minimal primitive classes of algebras containing any category of algebras as a full subcategory},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {627--635},
     year = {1968},
     volume = {9},
     number = {4},
     mrnumber = {0252305},
     zbl = {0204.33301},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1968_9_4_a11/}
}
TY  - JOUR
AU  - Sichler, Jiří
TI  - Concerning minimal primitive classes of algebras containing any category of algebras as a full subcategory
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1968
SP  - 627
EP  - 635
VL  - 9
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1968_9_4_a11/
LA  - en
ID  - CMUC_1968_9_4_a11
ER  - 
%0 Journal Article
%A Sichler, Jiří
%T Concerning minimal primitive classes of algebras containing any category of algebras as a full subcategory
%J Commentationes Mathematicae Universitatis Carolinae
%D 1968
%P 627-635
%V 9
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1968_9_4_a11/
%G en
%F CMUC_1968_9_4_a11
Sichler, Jiří. Concerning minimal primitive classes of algebras containing any category of algebras as a full subcategory. Commentationes Mathematicae Universitatis Carolinae, Tome 9 (1968) no. 4, pp. 627-635. http://geodesic.mathdoc.fr/item/CMUC_1968_9_4_a11/

[1] Z. HEDRLÍN J. LAMBEK: How comprehensive is the category of semigroups. to appear in J. of Algebra. | MR

[2] Z. HEDRLÍN A. PULTR: On full embeddings of categories of algebras. Ill. J. of Math. 10 (1966), 392-406. | MR

[3] A. PULTR: Eine Bemerkung über volle Einbettungen von Kategorien von Algebren. Math. Ann. 178 (1968), 78-82. | MR | Zbl

[4] A. PULTR J. SICHLER: Primitive classes of algebras with two unary idempdent operations, containing all algebraic categories as full subcategories. to appear. | MR

[5] J. SICHLER: Category of commutative groupoids is binding. Comment. Math. Univ. Carolinae 8, 4 (1967), 753-755. | MR | Zbl

[6] J. SICHLER: ${\germ A}(1,1)$ can be strongly embedded into category of semigroups. Comment. Math. Univ. Carolinae 9, 2 (1968), 257-262. | MR

[7] V. TRNKOVÁ: Strong embeddings of category of all groupoids into category of semigroups. Comment. Math. Univ. Carolinae 9, 2 (1968), 251-256. | MR