Gradient maps and boundedness of Gâ­­­­­teaux differentials
Commentationes Mathematicae Universitatis Carolinae, Tome 9 (1968) no. 4, pp. 613-625 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 46-45, 47Hxx, 49Axx
@article{CMUC_1968_9_4_a10,
     author = {Kolom\'y, Josef},
     title = {Gradient maps and boundedness of {G\^a\-\-\-\-\-teaux} differentials},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {613--625},
     year = {1968},
     volume = {9},
     number = {4},
     mrnumber = {0247464},
     zbl = {0174.46104},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1968_9_4_a10/}
}
TY  - JOUR
AU  - Kolomý, Josef
TI  - Gradient maps and boundedness of Gâ­­­­­teaux differentials
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1968
SP  - 613
EP  - 625
VL  - 9
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1968_9_4_a10/
LA  - en
ID  - CMUC_1968_9_4_a10
ER  - 
%0 Journal Article
%A Kolomý, Josef
%T Gradient maps and boundedness of Gâ­­­­­teaux differentials
%J Commentationes Mathematicae Universitatis Carolinae
%D 1968
%P 613-625
%V 9
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1968_9_4_a10/
%G en
%F CMUC_1968_9_4_a10
Kolomý, Josef. Gradient maps and boundedness of Gâ­­­­­teaux differentials. Commentationes Mathematicae Universitatis Carolinae, Tome 9 (1968) no. 4, pp. 613-625. http://geodesic.mathdoc.fr/item/CMUC_1968_9_4_a10/

[1] E. S. CITLANADZE: K variacionnoj teorii odnogo klassa nelinejnych operatorov v prostranstve $L_p (p > 1). Dokl. Ak. n. SSSR 71 (1950), No 3, 441-444.

[2] E. S. CITLANADZE: O differencirovanii funkcionalov. Matem. sb. 29 (71) (1951), No 1, 3-12. | MR

[3] M. M. VAJNBERG: Variacionnyje metody issledovanija nelinejnych operatorov. Moskva 1956.

[4] M. J. KADEC: O někotorych svojstvach potencial'nych operatorov v reflektivnych separabel'nych prostranstvach. Izv. vysš. učebn. zaved., mat. 15 (1960) No 2, 104-107. | MR

[5] V. J. ANOSOV: Obobščenije teorem E. S. Citlanadze o svojstvach gradientov slabo něpreryvnych funkcionalov. Trudy sem. pofunkc. analizu. Voroněž 1958, vyp. 6, 1-11.

[6] E. H. ROTHE: Gradient mappings and extrema in Banach spaces. Duke Math. J. 15 (1948), 421-431. | MR | Zbl

[7] E. H. ROTHE: Gradient mappings. Bull. Am Math. Soc. 59 (1953), 5-19. | MR | Zbl

[8] E. H. ROTHE: A note on gradient mappings. Proc. Am. Math. Soc. 10 (1959), 931-935. | MR

[9] T. ANDO: On gradient mappings in Banach spaces. Proc. Am. Math. Soc. 12 (1961), 297-299. | MR | Zbl

[10] J. W. DANIEL: Collectively compact sets of gradient mappings. Indag. Math. 30 (1968), 270-279. | MR | Zbl

[11] N. BOURBAKI: Topologičeskije vektornyje prostranstva. Moskva 1959.

[12] J. KOLOMÝ: On the differentiability of operators and convex functionals. Comment. Math. Univ. Carolinae 9 (1968), 441-454. | MR

[13] J. DANEŠ J. KOLOMÝ: On the continuity and differentiability properties of convex functionals. Comment. Math. Univ. Carolinae 9 (1968), 329-350. | MR

[14] E. ČECH: Bodové množiny. Academia, Praha 1966. | MR

[15] S. BANACH: Théorie des opérations linéaires. Monografje Matematyczne, Warsaw 1932. | Zbl