@article{CMUC_1968_9_4_a10,
author = {Kolom\'y, Josef},
title = {Gradient maps and boundedness of {G\^a\-\-\-\-\-teaux} differentials},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {613--625},
year = {1968},
volume = {9},
number = {4},
mrnumber = {0247464},
zbl = {0174.46104},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1968_9_4_a10/}
}
Kolomý, Josef. Gradient maps and boundedness of Gâteaux differentials. Commentationes Mathematicae Universitatis Carolinae, Tome 9 (1968) no. 4, pp. 613-625. http://geodesic.mathdoc.fr/item/CMUC_1968_9_4_a10/
[1] E. S. CITLANADZE: K variacionnoj teorii odnogo klassa nelinejnych operatorov v prostranstve $L_p (p > 1). Dokl. Ak. n. SSSR 71 (1950), No 3, 441-444.
[2] E. S. CITLANADZE: O differencirovanii funkcionalov. Matem. sb. 29 (71) (1951), No 1, 3-12. | MR
[3] M. M. VAJNBERG: Variacionnyje metody issledovanija nelinejnych operatorov. Moskva 1956.
[4] M. J. KADEC: O někotorych svojstvach potencial'nych operatorov v reflektivnych separabel'nych prostranstvach. Izv. vysš. učebn. zaved., mat. 15 (1960) No 2, 104-107. | MR
[5] V. J. ANOSOV: Obobščenije teorem E. S. Citlanadze o svojstvach gradientov slabo něpreryvnych funkcionalov. Trudy sem. pofunkc. analizu. Voroněž 1958, vyp. 6, 1-11.
[6] E. H. ROTHE: Gradient mappings and extrema in Banach spaces. Duke Math. J. 15 (1948), 421-431. | MR | Zbl
[7] E. H. ROTHE: Gradient mappings. Bull. Am Math. Soc. 59 (1953), 5-19. | MR | Zbl
[8] E. H. ROTHE: A note on gradient mappings. Proc. Am. Math. Soc. 10 (1959), 931-935. | MR
[9] T. ANDO: On gradient mappings in Banach spaces. Proc. Am. Math. Soc. 12 (1961), 297-299. | MR | Zbl
[10] J. W. DANIEL: Collectively compact sets of gradient mappings. Indag. Math. 30 (1968), 270-279. | MR | Zbl
[11] N. BOURBAKI: Topologičeskije vektornyje prostranstva. Moskva 1959.
[12] J. KOLOMÝ: On the differentiability of operators and convex functionals. Comment. Math. Univ. Carolinae 9 (1968), 441-454. | MR
[13] J. DANEŠ J. KOLOMÝ: On the continuity and differentiability properties of convex functionals. Comment. Math. Univ. Carolinae 9 (1968), 329-350. | MR
[14] E. ČECH: Bodové množiny. Academia, Praha 1966. | MR
[15] S. BANACH: Théorie des opérations linéaires. Monografje Matematyczne, Warsaw 1932. | Zbl