On constructing a distributive lattice from a partially ordered set with DCC
Commentationes Mathematicae Universitatis Carolinae, Tome 9 (1968) no. 4, pp. 515-525 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 06-20, 06Dxx
@article{CMUC_1968_9_4_a1,
     author = {Smith, David A.},
     title = {On constructing a distributive lattice from a partially ordered set with {DCC}},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {515--525},
     year = {1968},
     volume = {9},
     number = {4},
     mrnumber = {0242729},
     zbl = {0172.01702},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1968_9_4_a1/}
}
TY  - JOUR
AU  - Smith, David A.
TI  - On constructing a distributive lattice from a partially ordered set with DCC
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1968
SP  - 515
EP  - 525
VL  - 9
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1968_9_4_a1/
LA  - en
ID  - CMUC_1968_9_4_a1
ER  - 
%0 Journal Article
%A Smith, David A.
%T On constructing a distributive lattice from a partially ordered set with DCC
%J Commentationes Mathematicae Universitatis Carolinae
%D 1968
%P 515-525
%V 9
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1968_9_4_a1/
%G en
%F CMUC_1968_9_4_a1
Smith, David A. On constructing a distributive lattice from a partially ordered set with DCC. Commentationes Mathematicae Universitatis Carolinae, Tome 9 (1968) no. 4, pp. 515-525. http://geodesic.mathdoc.fr/item/CMUC_1968_9_4_a1/

[1] Garrett BIRKHOFF: Lattice Theory. Second Ed., American Mathematical Society (Colloquium Publications, No. 25), 1958.

[2] Garrett BIRKHOFF: Lattice Theory. Third Ed., same publisher, 1967. | MR

[3] Truman BOTTS: On lattice embeddings for partially ordered sets. Canad. J. Math. 6 (1954), 525-528. | MR

[4] R. P. DILWORTH, Peter CRAWLEY: Decomposition theory for lattices without chain conditions. Trans. Amer. Math. Soc. 96 (1960), 1-22. | MR

[5] Orin FRINK: Ideals in partially ordered sets. Amer. Math. Monthly 61 (1954), 223-234. | MR

[6] H. M. MacNEILLE: Partially ordered sets. Trans. Amer. Math. Soc. 42 (1937), 416-460. | MR | Zbl

[7] D. A. SMITH: Incidence functions as generalized arithmetic functions, II. Duke Math. J., to appear. | Zbl