${\frak A} (1,1)$ can be strongly embedded into category of semigroups
Commentationes Mathematicae Universitatis Carolinae, Tome 9 (1968) no. 2, pp. 257-262
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{CMUC_1968_9_2_a6,
author = {Sichler, Ji\v{r}{\'\i}},
title = {${\frak A} (1,1)$ can be strongly embedded into category of semigroups},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {257--262},
year = {1968},
volume = {9},
number = {2},
mrnumber = {0237395},
zbl = {0167.28404},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1968_9_2_a6/}
}
Sichler, Jiří. ${\frak A} (1,1)$ can be strongly embedded into category of semigroups. Commentationes Mathematicae Universitatis Carolinae, Tome 9 (1968) no. 2, pp. 257-262. http://geodesic.mathdoc.fr/item/CMUC_1968_9_2_a6/
[1] Z. HEDRLÍN J. LAMBEK: How comprehensive is the category of semigroups. to appear in J. of Algebra. | MR
[2] Z. HEDRLÍN A. PULTR: On full embeddings of categories of algebras. Ill. J. of Math. 10 (1966), 392-406. | MR
[3] A. PULTR: Eine Bemerkung über volle Einbettungen von Kategorien von Algebren. submitted to Math. Annalen. | Zbl
[4] V. DLAB B. H. NEUMANN: Semigroups with few endomorphisms. submitted to Austr. M. J.