${\frak A} (1,1)$ can be strongly embedded into category of semigroups
Commentationes Mathematicae Universitatis Carolinae, Tome 9 (1968) no. 2, pp. 257-262 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 08-10, 08Axx, 18Bxx, 20Mxx
@article{CMUC_1968_9_2_a6,
     author = {Sichler, Ji\v{r}{\'\i}},
     title = {${\frak A} (1,1)$ can be strongly embedded into category of semigroups},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {257--262},
     year = {1968},
     volume = {9},
     number = {2},
     mrnumber = {0237395},
     zbl = {0167.28404},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1968_9_2_a6/}
}
TY  - JOUR
AU  - Sichler, Jiří
TI  - ${\frak A} (1,1)$ can be strongly embedded into category of semigroups
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1968
SP  - 257
EP  - 262
VL  - 9
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1968_9_2_a6/
LA  - en
ID  - CMUC_1968_9_2_a6
ER  - 
%0 Journal Article
%A Sichler, Jiří
%T ${\frak A} (1,1)$ can be strongly embedded into category of semigroups
%J Commentationes Mathematicae Universitatis Carolinae
%D 1968
%P 257-262
%V 9
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1968_9_2_a6/
%G en
%F CMUC_1968_9_2_a6
Sichler, Jiří. ${\frak A} (1,1)$ can be strongly embedded into category of semigroups. Commentationes Mathematicae Universitatis Carolinae, Tome 9 (1968) no. 2, pp. 257-262. http://geodesic.mathdoc.fr/item/CMUC_1968_9_2_a6/

[1] Z. HEDRLÍN J. LAMBEK: How comprehensive is the category of semigroups. to appear in J. of Algebra. | MR

[2] Z. HEDRLÍN A. PULTR: On full embeddings of categories of algebras. Ill. J. of Math. 10 (1966), 392-406. | MR

[3] A. PULTR: Eine Bemerkung über volle Einbettungen von Kategorien von Algebren. submitted to Math. Annalen. | Zbl

[4] V. DLAB B. H. NEUMANN: Semigroups with few endomorphisms. submitted to Austr. M. J.