@article{CMUC_1968_9_2_a3,
author = {Seneta, Eugene},
title = {The principle of truncations in applied probability},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {237--242},
year = {1968},
volume = {9},
number = {2},
mrnumber = {0235640},
zbl = {0243.60038},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1968_9_2_a3/}
}
Seneta, Eugene. The principle of truncations in applied probability. Commentationes Mathematicae Universitatis Carolinae, Tome 9 (1968) no. 2, pp. 237-242. http://geodesic.mathdoc.fr/item/CMUC_1968_9_2_a3/
[1] M. FRÉCHET: Théorie des événements en chaine dans le cas d'un nombre fini d'états possible. Gauthier Villars, (1938).
[2] F. R. GANTMACHER: Applications of the Theory of Matrices. Interscience, (1959). | MR | Zbl
[3] R. A. HOWARD: Dynamic Programming and Markov Processes. Wlley, (1960). | MR | Zbl
[4] J. G. KEMENY, SNELL L. J.: Finite Markov Chains. Van Nostrand, (1960). | MR | Zbl
[5] F. RIESZ: Les Systèmes d'Equations Linéaires a une Infinite-d'Inconnues. Gauthier - Villars, (1913).
[6] V. I. ROMANOVSKY: Discrete Markov Chains. (Russian) GITTL, (1949).
[7] T. A. SARYMSAKOV: Elements of the theory of Markov Processes. (Russian) GITTL, (1954). | MR
[8] E. SENETA: Finite approximations to infinite nonnegative matrices. Proc. Camb. Phil. Soc. 63, (1967), 983-992. x) | MR
[9] D. VERE, JONES: Geometric ergodicity in denumerable Markov chains. Quart. J. Math. Oxford Ser. 13, (1962), 7-28. | MR | Zbl