The principle of truncations in applied probability
Commentationes Mathematicae Universitatis Carolinae, Tome 9 (1968) no. 2, pp. 237-242 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 15A06, 60-90, 60F99, 60H99, 60J10, 60Jxx
@article{CMUC_1968_9_2_a3,
     author = {Seneta, Eugene},
     title = {The principle of truncations in applied probability},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {237--242},
     year = {1968},
     volume = {9},
     number = {2},
     mrnumber = {0235640},
     zbl = {0243.60038},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1968_9_2_a3/}
}
TY  - JOUR
AU  - Seneta, Eugene
TI  - The principle of truncations in applied probability
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1968
SP  - 237
EP  - 242
VL  - 9
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1968_9_2_a3/
LA  - en
ID  - CMUC_1968_9_2_a3
ER  - 
%0 Journal Article
%A Seneta, Eugene
%T The principle of truncations in applied probability
%J Commentationes Mathematicae Universitatis Carolinae
%D 1968
%P 237-242
%V 9
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1968_9_2_a3/
%G en
%F CMUC_1968_9_2_a3
Seneta, Eugene. The principle of truncations in applied probability. Commentationes Mathematicae Universitatis Carolinae, Tome 9 (1968) no. 2, pp. 237-242. http://geodesic.mathdoc.fr/item/CMUC_1968_9_2_a3/

[1] M. FRÉCHET: Théorie des événements en chaine dans le cas d'un nombre fini d'états possible. Gauthier Villars, (1938).

[2] F. R. GANTMACHER: Applications of the Theory of Matrices. Interscience, (1959). | MR | Zbl

[3] R. A. HOWARD: Dynamic Programming and Markov Processes. Wlley, (1960). | MR | Zbl

[4] J. G. KEMENY, SNELL L. J.: Finite Markov Chains. Van Nostrand, (1960). | MR | Zbl

[5] F. RIESZ: Les Systèmes d'Equations Linéaires a une Infinite-d'Inconnues. Gauthier - Villars, (1913).

[6] V. I. ROMANOVSKY: Discrete Markov Chains. (Russian) GITTL, (1949).

[7] T. A. SARYMSAKOV: Elements of the theory of Markov Processes. (Russian) GITTL, (1954). | MR

[8] E. SENETA: Finite approximations to infinite nonnegative matrices. Proc. Camb. Phil. Soc. 63, (1967), 983-992. x) | MR

[9] D. VERE, JONES: Geometric ergodicity in denumerable Markov chains. Quart. J. Math. Oxford Ser. 13, (1962), 7-28. | MR | Zbl