Approximate solutions of equations in Banach spaces by the Newton iterative method. Part 2. Hammerstein integral equations
Commentationes Mathematicae Universitatis Carolinae, Tome 8 (1967) no. 3, pp. 469-501 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 65-75, 65Jxx
@article{CMUC_1967_8_3_a10,
     author = {Groschaftov\'a, Zdenka},
     title = {Approximate solutions of equations in {Banach} spaces by the {Newton} iterative method.  {Part} 2. {Hammerstein} integral equations},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {469--501},
     year = {1967},
     volume = {8},
     number = {3},
     mrnumber = {0224316},
     zbl = {0189.49601},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1967_8_3_a10/}
}
TY  - JOUR
AU  - Groschaftová, Zdenka
TI  - Approximate solutions of equations in Banach spaces by the Newton iterative method.  Part 2. Hammerstein integral equations
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1967
SP  - 469
EP  - 501
VL  - 8
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_1967_8_3_a10/
LA  - en
ID  - CMUC_1967_8_3_a10
ER  - 
%0 Journal Article
%A Groschaftová, Zdenka
%T Approximate solutions of equations in Banach spaces by the Newton iterative method.  Part 2. Hammerstein integral equations
%J Commentationes Mathematicae Universitatis Carolinae
%D 1967
%P 469-501
%V 8
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_1967_8_3_a10/
%G en
%F CMUC_1967_8_3_a10
Groschaftová, Zdenka. Approximate solutions of equations in Banach spaces by the Newton iterative method.  Part 2. Hammerstein integral equations. Commentationes Mathematicae Universitatis Carolinae, Tome 8 (1967) no. 3, pp. 469-501. http://geodesic.mathdoc.fr/item/CMUC_1967_8_3_a10/

[1] D. L. BERMAN: K voprosu o najlučšej sisteme uzlov paraboličeskoj interpoljacii. Izv. VUZ (mat.) (1963), 20-25. | MR

[2] D. L. BERMAN: Schodimosť interpoljacionnogo processa Lagranža, postrojennogo dlja absoljutno nepreryvnych funkcij i funkcij s ograničennym izměněnijem. DAN 112 (1957), 9-12. | MR

[3] D. L. BERMAN: K teorii interpoljacii. DAN 163 (1965), 551-554. | MR

[4] E. BOHL: Die Theorie einer Klasse linearer Operatoren und Existenzsätze für Lösungen nichtlinearer Probleme in halbheordneten Banach-Räumen. Archiv Rat. Mech. Anal. 15 (1964), 263-288. | MR

[5] Z. GROSCHAFTOVÁ: Approximate solutions of equations in Banach spaces by the Newton iterative method. Part 1. General theorems, Comment. Math. Univ. Carolinae, 8, 2 (1967), 335-358. | MR

[6] I. A. JEGOROVA: O schodimosti interpljacionnogo processa Lagranža po kornjam polinomov Čebyševa vtorogo roda. Uč. zapiski LGU 183 (1958), 143-150.

[7] L. V. KANTOROVIČ G. P. AKILOV: Funkcionalnyj analiz v normirovannych prostranstvach. Moskva 1959.

[8] H. B. KELLER E. L. REISS: Iterative solutions for the nonlinear bending of circular plates. Com. Pure Appl. Math. 11 (1958), 273-292. | MR

[9] I. I. KOLODNER: Equations of Hammerstein type in Hilbert spaces. Journ. Math. Mech. 13 (1964), 701-750. | MR | Zbl

[10] V. I. KRYLOV: Schodimosť algebraičeskogo interpolirovanija po kornjam mnogočlena Čebyševa dlja absoljutno nepreryvnych funkcij i funkcij s ograničennym izmeněnijem. DAN 107 (1956), 362-365. | MR

[11] C. LANCZOS: Praktičeskije metody prikladnogo analiza. Moskva 1961 (translated from English).

[12] C. LANCZOS: Trigonometrical interpolation of empirical and analytical functions. Journ. Appl. Math. Phys. 17 (1938), 123-199.

[13] I. P. MYSOVSKICH: O metodě mechaničeskich kvadratur dlja řešenija integralnych uravněnij. Vestnik LGU 1962, No 7, 78-88.

[14] I. P. NATANSON: Konstruktive Funktionentheorie. Berlin 1955 (translated from Russian) - Chap. VI, § 2. | MR | Zbl

[15] E. STEHLÍK: Numerické řešení integrálních rovnic užitím interpolačních polynomů a jeho aplikace v technické praxi. dissertation MFF KU, 1964.

[16] G. M. VAJNIKKO: O schodimosti metoda kollokacii dlja nelinejnych differencialnych uravněnij. Žurnal vyč. mat. i mat. fiz. 6 (1966), 35-42.