@article{CMUC_1967_8_2_a9,
author = {Jech, Tom\'a\v{s}},
title = {Non-provability of {Souslin's} hypothesis},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {291--305},
year = {1967},
volume = {8},
number = {2},
mrnumber = {0215729},
zbl = {0204.00701},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1967_8_2_a9/}
}
Jech, Tomáš. Non-provability of Souslin's hypothesis. Commentationes Mathematicae Universitatis Carolinae, Tome 8 (1967) no. 2, pp. 291-305. http://geodesic.mathdoc.fr/item/CMUC_1967_8_2_a9/
[1] P. J. COHEN: The independence of the axiom of choice. mimeographed, Stanford Univ. 1963.
[2] K. GÖDEL: The consistency of the axiom of choice [ ...]. Princeton Univ. Press 1940.
[3] P. HÁJEK, P. VOPĚNKA: Some permutation submodels of the model $\nabla $. Bull. Acad. Polon. Sci. 14 (1966), 1-7. | MR
[4] A. HAJHAL: On a consistency theorem connected with the generalized continuum problem. Zeitschr. Math. Logik 2 (1956), 131-136. | MR
[5] T. JECH, P. VOPĚNKA: Generalized Souslin's hypothesis. to appear in Zeitschr. math. Logik.
[6] A. S. JESENIN, VOL'PIN: Nedokazuemost gipotezy Suslina bez pomošči aksiomy vybora [...]. (in Russian), Doklady Akad. Nauk SSSR 96 (1954), 9-12. | MR
[7] P. KUREPA: L'hypothèse de ramification. Comptes Rendus Acad. Sci. Paris 202 (1936), 185-187. | Zbl
[8] A. LÉVY: Indépendence conditionnelle de $V=L$ [.. ]. ibid., 245 (1957), 1582-3. | MR
[9] A. LÉVY: A generalization of Gödel's notion of constructibility. Journ. Symb. Logic 25 (1960), 147-155. | MR | Zbl
[10] E. W. MILLER: A note on Souslin's problem. Amer. Journ. Math. 65 (1943), 673-678. | MR | Zbl
[11] J. R. SHOENFIELD: On the independence of the axiom of constructibility. ibid., 81 (1959), 537-540. | MR | Zbl
[12] W. SIERPIŃSKI: Sur un problème de la théorie générale des ensembles équivalent au problème de Souslin. Fund. Math. 35 (1948), 165-174. | MR
[13] M. J. SOUSLIN: Problème 3. ibid., 1 (1920), 223.
[14] P. VOPĚNKA: The limit of sheaves [...]. Bull. Acad. Polon. Sci. 13 (1965), 189-192. | MR
[15] P. VOPĚNKA: On $\nabla $-model of set theory. ibid., 13 (1965), 267-272. | MR
[16] P. VOPĚNKA: Properties of $\nabla $ -model. ibid., 13 (1965), 441-444. | MR
[17] P. VOPĚNKA: $\nabla $ -models in which GCH does not hold. ibid., 14 (1966), 95-99. | MR
[18] P. VOPĚNKA: General theory of $\nabla $ -models. Comment. Math. Univ. Carolinae 8 (1967). | MR