The elliptic differential operators
Commentationes Mathematicae Universitatis Carolinae, Tome 8 (1967) no. 2, pp. 175-197 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 57-50, 58Gxx
@article{CMUC_1967_8_2_a0,
     author = {Cenkl, Bohumil},
     title = {The elliptic differential operators},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {175--197},
     year = {1967},
     volume = {8},
     number = {2},
     mrnumber = {0232409},
     zbl = {0157.18302},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1967_8_2_a0/}
}
TY  - JOUR
AU  - Cenkl, Bohumil
TI  - The elliptic differential operators
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1967
SP  - 175
EP  - 197
VL  - 8
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1967_8_2_a0/
LA  - en
ID  - CMUC_1967_8_2_a0
ER  - 
%0 Journal Article
%A Cenkl, Bohumil
%T The elliptic differential operators
%J Commentationes Mathematicae Universitatis Carolinae
%D 1967
%P 175-197
%V 8
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1967_8_2_a0/
%G en
%F CMUC_1967_8_2_a0
Cenkl, Bohumil. The elliptic differential operators. Commentationes Mathematicae Universitatis Carolinae, Tome 8 (1967) no. 2, pp. 175-197. http://geodesic.mathdoc.fr/item/CMUC_1967_8_2_a0/

[1] R. BOTT: Notes on the Spencer resolution. mimeographed notes, Harvard University, 1963.

[2] P. A. GRIFFITHS: Hermitian differential geometry and the theory of positive and ample holomorphic vector bundles. Journal of Math. and Mech., 14 (1965), 117-140. | MR | Zbl

[3] L. HÖRMANDER: Linear partial differential operators. Spriger-Verlag, Berlin, 1963. | MR

[4] K. KODAIRA: On a differential-geometric method in the theory of analytic stacks. Proc. Nat. Acad. Sci., 39 (1953), 1268-1273. | MR | Zbl

[5] J. J. KOHN: Harmonic integrals on strongly pseudoconvex manifolds, I. Ann. of Math., 77 (1963).

[6] D. G. QUILLEN: Formal properties of over-determined systems of linear partial differential equations. Harvard thesis, 1964 (to appear).

[7] I. M. SINGER, S. STERNBERG: The infinite groups of Lie and Cartan. Part I, (The transitive groups), Journal d'Anal. Math., XV (1965), 1-114. | MR | Zbl

[8] D. C. SPENCER: Deformation of structures on manifolds defined by transitivie, continuous pseudogroups III. Ann. of Math., 81 (1965), 389-450. | MR

[9] W. J. SWEENEY: The D-Neumann problem. Stanford thesis, 1966 (to appear). | MR