@article{CMUC_1967_8_2_a0,
author = {Cenkl, Bohumil},
title = {The elliptic differential operators},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {175--197},
year = {1967},
volume = {8},
number = {2},
mrnumber = {0232409},
zbl = {0157.18302},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1967_8_2_a0/}
}
Cenkl, Bohumil. The elliptic differential operators. Commentationes Mathematicae Universitatis Carolinae, Tome 8 (1967) no. 2, pp. 175-197. http://geodesic.mathdoc.fr/item/CMUC_1967_8_2_a0/
[1] R. BOTT: Notes on the Spencer resolution. mimeographed notes, Harvard University, 1963.
[2] P. A. GRIFFITHS: Hermitian differential geometry and the theory of positive and ample holomorphic vector bundles. Journal of Math. and Mech., 14 (1965), 117-140. | MR | Zbl
[3] L. HÖRMANDER: Linear partial differential operators. Spriger-Verlag, Berlin, 1963. | MR
[4] K. KODAIRA: On a differential-geometric method in the theory of analytic stacks. Proc. Nat. Acad. Sci., 39 (1953), 1268-1273. | MR | Zbl
[5] J. J. KOHN: Harmonic integrals on strongly pseudoconvex manifolds, I. Ann. of Math., 77 (1963).
[6] D. G. QUILLEN: Formal properties of over-determined systems of linear partial differential equations. Harvard thesis, 1964 (to appear).
[7] I. M. SINGER, S. STERNBERG: The infinite groups of Lie and Cartan. Part I, (The transitive groups), Journal d'Anal. Math., XV (1965), 1-114. | MR | Zbl
[8] D. C. SPENCER: Deformation of structures on manifolds defined by transitivie, continuous pseudogroups III. Ann. of Math., 81 (1965), 389-450. | MR
[9] W. J. SWEENEY: The D-Neumann problem. Stanford thesis, 1966 (to appear). | MR