Consistency theorems connected with some combinatorial problems
Commentationes Mathematicae Universitatis Carolinae, Tome 7 (1966) no. 4, pp. 495-499 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 04-60
@article{CMUC_1966_7_4_a7,
     author = {Bukovsk\'y, Lev},
     title = {Consistency theorems connected with some combinatorial problems},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {495--499},
     year = {1966},
     volume = {7},
     number = {4},
     mrnumber = {0207566},
     zbl = {0158.26601},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1966_7_4_a7/}
}
TY  - JOUR
AU  - Bukovský, Lev
TI  - Consistency theorems connected with some combinatorial problems
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1966
SP  - 495
EP  - 499
VL  - 7
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1966_7_4_a7/
LA  - en
ID  - CMUC_1966_7_4_a7
ER  - 
%0 Journal Article
%A Bukovský, Lev
%T Consistency theorems connected with some combinatorial problems
%J Commentationes Mathematicae Universitatis Carolinae
%D 1966
%P 495-499
%V 7
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1966_7_4_a7/
%G en
%F CMUC_1966_7_4_a7
Bukovský, Lev. Consistency theorems connected with some combinatorial problems. Commentationes Mathematicae Universitatis Carolinae, Tome 7 (1966) no. 4, pp. 495-499. http://geodesic.mathdoc.fr/item/CMUC_1966_7_4_a7/

[1] P. ERDÖS A. HAJNAL R. RADO: Partition relations for cardinal numbers. Acta Math. Acad. Sci. Hung., 16 (1965), 93-196. | MR

[2] K. GÖDEL: The consistency of the axiom of choice and of the generalized continuum hypothesis with the axioms of set theory. Ann. of Math. Studies, Princeton 1940.

[3] A. HAJNAL: On a consistency theorem connected with the generalized, continuum problem. Acta Math. Acad. Sci. Hung., 12 (1961), 321-376. | MR | Zbl

[4] K. HRBÁČEK: Model $\nabla [\omega \sb{\alpha }\rightarrow \omega \sb{\beta }]$ in which $\beta $ is limit number. CMUC, 6 (1965), 439-442. | MR

[5] J. MYCIELSKI: On the axiom of determinateness. Fund. Math., 53 (1964), 205-224. | MR | Zbl

[6] P. VOPĚNKA: $\nabla $ -models in which the generalized continuum hypothesis does not hold. Bull. Acad. Sci. Polon., 14 (1966), 95-99. | MR