Measurable cardinals in some Gödelian set theories
Commentationes Mathematicae Universitatis Carolinae, Tome 7 (1966) no. 3, pp. 343-358 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 02-68
@article{CMUC_1966_7_3_a9,
     author = {Hrb\'a\v{c}ek, Karel},
     title = {Measurable cardinals in some {G\"odelian} set theories},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {343--358},
     year = {1966},
     volume = {7},
     number = {3},
     mrnumber = {0209146},
     zbl = {0158.26201},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1966_7_3_a9/}
}
TY  - JOUR
AU  - Hrbáček, Karel
TI  - Measurable cardinals in some Gödelian set theories
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1966
SP  - 343
EP  - 358
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_1966_7_3_a9/
LA  - en
ID  - CMUC_1966_7_3_a9
ER  - 
%0 Journal Article
%A Hrbáček, Karel
%T Measurable cardinals in some Gödelian set theories
%J Commentationes Mathematicae Universitatis Carolinae
%D 1966
%P 343-358
%V 7
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_1966_7_3_a9/
%G en
%F CMUC_1966_7_3_a9
Hrbáček, Karel. Measurable cardinals in some Gödelian set theories. Commentationes Mathematicae Universitatis Carolinae, Tome 7 (1966) no. 3, pp. 343-358. http://geodesic.mathdoc.fr/item/CMUC_1966_7_3_a9/

[1] K. GÖDEL: The Consistency of the Axiom of Choice... Princeton University Press, 2nd printing 1951.

[2] P. HÁJEK: Syntactic models of axiomatic theories. Bull. Acad. Polon. Sci. 13 (1965), No 4, 273-278. | MR

[3] A. HAJNAL: On a consistency theorem connected with the generalized continuum problem. Acta Math. Acad. Sci. Hungar. 12 (1961), 321-376. | MR | Zbl

[4] A. LÉVY: A generalization of Gödel's notion of constructibility. Journ. Symb. Logic 25 (1960), No 2, 147-155. | MR | Zbl

[5] A. LÉVY: Measurable cardinals and the continuum hypothesis. Notices Amer. Math. Soc. 11 (1964), No 7, iss. 78, 769.

[6] K. PŘÍKRÝ: The consistency of the continuum hypothesis for the first measurable cardinal. Bull. Acad. Polon. Sci. 13 (1965), No 3, 193-197. | MR

[7] J. R. SHOENFIELD: On the independence of the axiom of constructibility. Amer. Journ. of Math. 81 (1959), 537-540. | MR | Zbl

[8] R. M. SOLOVAY: Measurable cardinals and the continuum hypothesis. (printed thesis), mimeographed. | Zbl

[9] P. VOPĚNKA: The limits of sheaves and application on construction of models. Bull. Acad. Polon. Sci. 13 (1965), No 3, 189-192. | MR

[10] P. VOPĚNKA: On $\nabla $-model of set theory. Bull. Acad. Polon. Sci. 13 (1965), No 4, 267-272. | MR

[11] P. VOPĚNKA: Properties of $\nabla $-model. Bull. Acad. Polon. Sci. 13 (1965), No 7, 441-444. | MR

[12] P. VOPĚNKA: $\nabla $-models in which the generalized continuum hypothesis does not hold. Bull. Acad. Polon. Sci. 14 (1966), No 3, 95-99. | MR

[13] P.VOPĚNKA, P. HÁJEK.: Permutation submodels of the model $\nabla $. Bull. Acad. Polon. Sci. 13 (1965), No 9, 611 -614. | MR | Zbl

[14] P. HÁJEK, P. VOPĚNKA: Some permutation submodels of the model $\nabla $. Bull. Acad. Polon. Sci. 14 (1966), No 1, 1-7. | MR