@article{CMUC_1966_7_3_a10,
author = {Jech, Tom\'a\v{s}},
title = {Interdependence of weakened forms of the axiom of choice},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {359--371},
year = {1966},
volume = {7},
number = {3},
mrnumber = {0201320},
zbl = {0199.02001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1966_7_3_a10/}
}
Jech, Tomáš. Interdependence of weakened forms of the axiom of choice. Commentationes Mathematicae Universitatis Carolinae, Tome 7 (1966) no. 3, pp. 359-371. http://geodesic.mathdoc.fr/item/CMUC_1966_7_3_a10/
[1] A. FRAENKEL: Sur l'axiome du choix. L'Enseignement Math. 34 (1935), 32-51. | Zbl
[2] K. GÖDEL: The Consistency of the Axiom of Choice... Princeton (1940).
[3] P. HÁJEK, P. VOPĚNKA: Some permutation submodels of the model $\nabla $. Bull. Acad. Polon. Sci. 14 (1966) - to appear. | MR
[4] T. JECH, A. SOCHOR: On $Theta $ -model of set theory. ibid. 14 (1966) - to appear. | MR
[5] T. JECH, A. SOCHOR: Applications of the $Theta $ -model. ibid. 14 (1966) - to appear. | Zbl
[6] A. LÉVY: The interdependence of certain consequences of the axiom of choice. Fundamenta Math. 54 (1964), 135-157. | MR
[7] A. MOSTOWSKI: Über die Unabhängigkeit des Wohlordnungasatzes vom Ordnungsprinzip. ibid. 32 (1939), 201-252.
[8] A. MOSTOWSKI: On the principle of dependent choices. ibid. 35 (1948), 127-130. | MR | Zbl
[9] K. PŘÍKRÝ: The consistency of the continuum hypothedis for the first measurable cardinal. Bull. Acad. Pol. Sci. 13 (1965), 193-197. | MR
[10] H. RUBIN, J. RUBIN: Equivalents of the Axiom of Choice. North-Holland Publ. Comp., Amsterdam (1963). | MR | Zbl
[11] E. SPECKER: Zur Axiomatik der Mengenlehre. Zeitschr. f. Math.Logik 3 (1957), 173-210. | MR | Zbl
[12] A. TARSKI: Axiomatic and algebraic aspects of two theorems on sums of cardinals. Fund. Math. 35 (1948), 79-104. | MR | Zbl
[13] P. VOPĚNKA: Předsvazek relací, Model $\nabla $. (in Czech, Presheaves of relations, the model $\nabla $), mimeographed, Prague (1964).
[14] P. VOPĚNKA: On $\nabla $ -model of set theory. Bull. Acad. Polon. Sci. 13 (1965), 267-272 . | MR
[15] P. VOPĚNKA: Properties of $\nabla $ -model. ibid. 13 (1965), 441-444. | MR
[16] P. VOPĚNKA, P. HÁJEK: Permutation submodels of the model $\nabla $. ibid. 13 (1965), 611-614. | MR