Model $\nabla[\omega_\alpha\to\omega_\beta]$ in which $\beta$ is limit number
Commentationes Mathematicae Universitatis Carolinae, Tome 6 (1965) no. 4, pp. 439-442 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 02-65
@article{CMUC_1965_6_4_a5,
     author = {Hrb\'a\v{c}ek, Karel},
     title = {Model $\nabla[\omega_\alpha\to\omega_\beta]$ in which $\beta$ is limit number},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {439--442},
     year = {1965},
     volume = {6},
     number = {4},
     mrnumber = {0200136},
     zbl = {0139.24607},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1965_6_4_a5/}
}
TY  - JOUR
AU  - Hrbáček, Karel
TI  - Model $\nabla[\omega_\alpha\to\omega_\beta]$ in which $\beta$ is limit number
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1965
SP  - 439
EP  - 442
VL  - 6
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1965_6_4_a5/
LA  - en
ID  - CMUC_1965_6_4_a5
ER  - 
%0 Journal Article
%A Hrbáček, Karel
%T Model $\nabla[\omega_\alpha\to\omega_\beta]$ in which $\beta$ is limit number
%J Commentationes Mathematicae Universitatis Carolinae
%D 1965
%P 439-442
%V 6
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1965_6_4_a5/
%G en
%F CMUC_1965_6_4_a5
Hrbáček, Karel. Model $\nabla[\omega_\alpha\to\omega_\beta]$ in which $\beta$ is limit number. Commentationes Mathematicae Universitatis Carolinae, Tome 6 (1965) no. 4, pp. 439-442. http://geodesic.mathdoc.fr/item/CMUC_1965_6_4_a5/

[1] K. GÖDEL: The consistency of the axiom of choice and of the generalized continuum hypothesis with the axioms of set theory. Annals of Math. Studies 3, Princeton 1940. | MR

[2] P. VOPĚNKA: Properties of $\nabla $ -model. Bull. Acad. Sci. Polon 13 (1965). | MR

[3] P. VOPĚNKA: $\nabla $ -models in which the generalized continuum hypothesis does not hold. Bull. Acad. Sci. Polon 13 (1965). | MR