Model $\nabla[\omega_\alpha\to\omega_\beta]$ in which $\beta$ is limit number
Commentationes Mathematicae Universitatis Carolinae, Tome 6 (1965) no. 4, pp. 439-442
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{CMUC_1965_6_4_a5,
author = {Hrb\'a\v{c}ek, Karel},
title = {Model $\nabla[\omega_\alpha\to\omega_\beta]$ in which $\beta$ is limit number},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {439--442},
year = {1965},
volume = {6},
number = {4},
mrnumber = {0200136},
zbl = {0139.24607},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1965_6_4_a5/}
}
TY - JOUR AU - Hrbáček, Karel TI - Model $\nabla[\omega_\alpha\to\omega_\beta]$ in which $\beta$ is limit number JO - Commentationes Mathematicae Universitatis Carolinae PY - 1965 SP - 439 EP - 442 VL - 6 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMUC_1965_6_4_a5/ LA - en ID - CMUC_1965_6_4_a5 ER -
Hrbáček, Karel. Model $\nabla[\omega_\alpha\to\omega_\beta]$ in which $\beta$ is limit number. Commentationes Mathematicae Universitatis Carolinae, Tome 6 (1965) no. 4, pp. 439-442. http://geodesic.mathdoc.fr/item/CMUC_1965_6_4_a5/
[1] K. GÖDEL: The consistency of the axiom of choice and of the generalized continuum hypothesis with the axioms of set theory. Annals of Math. Studies 3, Princeton 1940. | MR
[2] P. VOPĚNKA: Properties of $\nabla $ -model. Bull. Acad. Sci. Polon 13 (1965). | MR
[3] P. VOPĚNKA: $\nabla $ -models in which the generalized continuum hypothesis does not hold. Bull. Acad. Sci. Polon 13 (1965). | MR