Concerning a proof of $\aleph_{\alpha+1}\leq 2^{\aleph_\alpha}$ without axiom of choice
Commentationes Mathematicae Universitatis Carolinae, Tome 6 (1965) no. 1, pp. 111-113
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{CMUC_1965_6_1_a12,
author = {Vop\v{e}nka, Petr},
title = {Concerning a proof of $\aleph_{\alpha+1}\leq 2^{\aleph_\alpha}$ without axiom of choice},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {111--113},
year = {1965},
volume = {6},
number = {1},
mrnumber = {0174484},
zbl = {0199.01701},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1965_6_1_a12/}
}
TY - JOUR
AU - Vopěnka, Petr
TI - Concerning a proof of $\aleph_{\alpha+1}\leq 2^{\aleph_\alpha}$ without axiom of choice
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1965
SP - 111
EP - 113
VL - 6
IS - 1
UR - http://geodesic.mathdoc.fr/item/CMUC_1965_6_1_a12/
LA - en
ID - CMUC_1965_6_1_a12
ER -
Vopěnka, Petr. Concerning a proof of $\aleph_{\alpha+1}\leq 2^{\aleph_\alpha}$ without axiom of choice. Commentationes Mathematicae Universitatis Carolinae, Tome 6 (1965) no. 1, pp. 111-113. http://geodesic.mathdoc.fr/item/CMUC_1965_6_1_a12/