Boundedness of fractional operators in weighted variable exponent spaces with non doubling measures
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 4, pp. 1007-1023 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In the context of variable exponent Lebesgue spaces equipped with a lower Ahlfors measure we obtain weighted norm inequalities over bounded domains for the centered fractional maximal function and the fractional integral operator.
In the context of variable exponent Lebesgue spaces equipped with a lower Ahlfors measure we obtain weighted norm inequalities over bounded domains for the centered fractional maximal function and the fractional integral operator.
Classification : 42B25
Keywords: variable exponent; weighted spaces; non doubling measures
@article{CMJ_2010_60_4_a8,
     author = {Gorosito, Osvaldo and Pradolini, Gladis and Salinas, Oscar},
     title = {Boundedness of fractional operators in weighted variable exponent spaces with non doubling measures},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1007--1023},
     year = {2010},
     volume = {60},
     number = {4},
     mrnumber = {2738962},
     zbl = {1224.42060},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a8/}
}
TY  - JOUR
AU  - Gorosito, Osvaldo
AU  - Pradolini, Gladis
AU  - Salinas, Oscar
TI  - Boundedness of fractional operators in weighted variable exponent spaces with non doubling measures
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 1007
EP  - 1023
VL  - 60
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a8/
LA  - en
ID  - CMJ_2010_60_4_a8
ER  - 
%0 Journal Article
%A Gorosito, Osvaldo
%A Pradolini, Gladis
%A Salinas, Oscar
%T Boundedness of fractional operators in weighted variable exponent spaces with non doubling measures
%J Czechoslovak Mathematical Journal
%D 2010
%P 1007-1023
%V 60
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a8/
%G en
%F CMJ_2010_60_4_a8
Gorosito, Osvaldo; Pradolini, Gladis; Salinas, Oscar. Boundedness of fractional operators in weighted variable exponent spaces with non doubling measures. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 4, pp. 1007-1023. http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a8/

[1] Almeida, A., Samko, S.: Fractional and hypersingular operators in variable exponent spaces on metric measure spaces. Mediterr. J. Math. 6 (2009), 215-232. | DOI | MR | Zbl

[2] Capone, C., Cruz-Uribe, D., Fiorenza, A.: The fractional maximal operator and fractional integrals on variable $L^p$ spaces. Rev. Mat. Iberoam. 23 (2007), 743-770. | DOI | MR

[3] Cruz-Uribe, D., Fiorenza, A., Neugebauer, C. J.: The maximal function on variable $L^p$ spaces. Ann. Acad. Sci. Fenn., Math. 28 (2003), 223-238. | MR

[4] Diening, L.: Maximal function on generalized Lebesgue spaces $L^{p(\cdot)}$. Math. Inequal. Appl. 7 (2004), 245-254. | MR

[5] Cuerva, J. García, Martell, J. M.: Two-weight norm inequalities for maximal operators and fractional integrals on non-homogeneous spaces. Indiana Univ. Math. J. 50 (2001), 1241-1280. | MR

[6] Harjulehto, P., Hästö, P., Latvala, V.: Sobolev embeddings in metric measure spaces with variable dimension. Math. Z. 254 (2006), 591-609. | DOI | MR

[7] Harjulehto, P., Hästö, P., Pere, M.: Variable exponent Lebesgue spaces on metric spaces: The Hardy-Littlewood maximal operator. Real Anal. Exch. 30 (2004/2005), 87-104. | MR

[8] Kokilashvili, V., Samko, S.: Maximal and fractional operators in weighted $L^{p(x)}$ spaces. Rev. Mat. Iberoam. 20 (2004), 493-515. | DOI | MR

[9] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czechoslovak Math. J. 41(116) (1991), 592-618. | MR

[10] Musielak, J.: Orlicz spaces and Modular spaces. Lecture Notes in Math. Vol. 1034. Springer Berlin (1983). | MR

[11] Muckenhoupt, B., Wheeden, R. L.: Weighted norm inequalities for fractional integrals. Trans. Am. Math. Soc. 192 (1974), 261-274. | DOI | MR | Zbl

[12] Pick, L., Růžička, M.: An example of a space $L^{p(x)}$ on which the Hardy-Littlewood maximal operator is not bounded. Expo. Math. 4 (2001), 369-372. | DOI | MR

[13] Růžička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Math. Vol. 1748. Springer Berlin (2000). | DOI | MR

[14] Samko, S.: Hardy-Littlewood-Stein-Weiss inequality in the Lebesgue spaces with variable exponent. Fract. Calc. Appl. Anal. 6 (2003), 421-440. | MR | Zbl

[15] Welland, G. V.: Weighted norm inequalities for fractional integrals. Proc. Am. Math. Soc. 51 (1975), 143-148. | DOI | MR | Zbl