@article{CMJ_2010_60_4_a8,
author = {Gorosito, Osvaldo and Pradolini, Gladis and Salinas, Oscar},
title = {Boundedness of fractional operators in weighted variable exponent spaces with non doubling measures},
journal = {Czechoslovak Mathematical Journal},
pages = {1007--1023},
year = {2010},
volume = {60},
number = {4},
mrnumber = {2738962},
zbl = {1224.42060},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a8/}
}
TY - JOUR AU - Gorosito, Osvaldo AU - Pradolini, Gladis AU - Salinas, Oscar TI - Boundedness of fractional operators in weighted variable exponent spaces with non doubling measures JO - Czechoslovak Mathematical Journal PY - 2010 SP - 1007 EP - 1023 VL - 60 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a8/ LA - en ID - CMJ_2010_60_4_a8 ER -
%0 Journal Article %A Gorosito, Osvaldo %A Pradolini, Gladis %A Salinas, Oscar %T Boundedness of fractional operators in weighted variable exponent spaces with non doubling measures %J Czechoslovak Mathematical Journal %D 2010 %P 1007-1023 %V 60 %N 4 %U http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a8/ %G en %F CMJ_2010_60_4_a8
Gorosito, Osvaldo; Pradolini, Gladis; Salinas, Oscar. Boundedness of fractional operators in weighted variable exponent spaces with non doubling measures. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 4, pp. 1007-1023. http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a8/
[1] Almeida, A., Samko, S.: Fractional and hypersingular operators in variable exponent spaces on metric measure spaces. Mediterr. J. Math. 6 (2009), 215-232. | DOI | MR | Zbl
[2] Capone, C., Cruz-Uribe, D., Fiorenza, A.: The fractional maximal operator and fractional integrals on variable $L^p$ spaces. Rev. Mat. Iberoam. 23 (2007), 743-770. | DOI | MR
[3] Cruz-Uribe, D., Fiorenza, A., Neugebauer, C. J.: The maximal function on variable $L^p$ spaces. Ann. Acad. Sci. Fenn., Math. 28 (2003), 223-238. | MR
[4] Diening, L.: Maximal function on generalized Lebesgue spaces $L^{p(\cdot)}$. Math. Inequal. Appl. 7 (2004), 245-254. | MR
[5] Cuerva, J. García, Martell, J. M.: Two-weight norm inequalities for maximal operators and fractional integrals on non-homogeneous spaces. Indiana Univ. Math. J. 50 (2001), 1241-1280. | MR
[6] Harjulehto, P., Hästö, P., Latvala, V.: Sobolev embeddings in metric measure spaces with variable dimension. Math. Z. 254 (2006), 591-609. | DOI | MR
[7] Harjulehto, P., Hästö, P., Pere, M.: Variable exponent Lebesgue spaces on metric spaces: The Hardy-Littlewood maximal operator. Real Anal. Exch. 30 (2004/2005), 87-104. | MR
[8] Kokilashvili, V., Samko, S.: Maximal and fractional operators in weighted $L^{p(x)}$ spaces. Rev. Mat. Iberoam. 20 (2004), 493-515. | DOI | MR
[9] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czechoslovak Math. J. 41(116) (1991), 592-618. | MR
[10] Musielak, J.: Orlicz spaces and Modular spaces. Lecture Notes in Math. Vol. 1034. Springer Berlin (1983). | MR
[11] Muckenhoupt, B., Wheeden, R. L.: Weighted norm inequalities for fractional integrals. Trans. Am. Math. Soc. 192 (1974), 261-274. | DOI | MR | Zbl
[12] Pick, L., Růžička, M.: An example of a space $L^{p(x)}$ on which the Hardy-Littlewood maximal operator is not bounded. Expo. Math. 4 (2001), 369-372. | DOI | MR
[13] Růžička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Math. Vol. 1748. Springer Berlin (2000). | DOI | MR
[14] Samko, S.: Hardy-Littlewood-Stein-Weiss inequality in the Lebesgue spaces with variable exponent. Fract. Calc. Appl. Anal. 6 (2003), 421-440. | MR | Zbl
[15] Welland, G. V.: Weighted norm inequalities for fractional integrals. Proc. Am. Math. Soc. 51 (1975), 143-148. | DOI | MR | Zbl