On the sum of powers of Laplacian eigenvalues of bipartite graphs
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 4, pp. 1161-1169 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For a bipartite graph $G$ and a non-zero real $\alpha $, we give bounds for the sum of the $\alpha $th powers of the Laplacian eigenvalues of $G$ using the sum of the squares of degrees, from which lower and upper bounds for the incidence energy, and lower bounds for the Kirchhoff index and the Laplacian Estrada index are deduced.
For a bipartite graph $G$ and a non-zero real $\alpha $, we give bounds for the sum of the $\alpha $th powers of the Laplacian eigenvalues of $G$ using the sum of the squares of degrees, from which lower and upper bounds for the incidence energy, and lower bounds for the Kirchhoff index and the Laplacian Estrada index are deduced.
Classification : 05C50, 05C90
Keywords: Laplacian eigenvalues; incidence energy; Kirchhoff index; Laplacian Estrada index
@article{CMJ_2010_60_4_a23,
     author = {Zhou, Bo and Ili\'c, Aleksandar},
     title = {On the sum of powers of {Laplacian} eigenvalues of bipartite graphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1161--1169},
     year = {2010},
     volume = {60},
     number = {4},
     mrnumber = {2738977},
     zbl = {1224.05333},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a23/}
}
TY  - JOUR
AU  - Zhou, Bo
AU  - Ilić, Aleksandar
TI  - On the sum of powers of Laplacian eigenvalues of bipartite graphs
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 1161
EP  - 1169
VL  - 60
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a23/
LA  - en
ID  - CMJ_2010_60_4_a23
ER  - 
%0 Journal Article
%A Zhou, Bo
%A Ilić, Aleksandar
%T On the sum of powers of Laplacian eigenvalues of bipartite graphs
%J Czechoslovak Mathematical Journal
%D 2010
%P 1161-1169
%V 60
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a23/
%G en
%F CMJ_2010_60_4_a23
Zhou, Bo; Ilić, Aleksandar. On the sum of powers of Laplacian eigenvalues of bipartite graphs. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 4, pp. 1161-1169. http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a23/

[1] Fath-Tabar, G. H., Ashrafi, A. R., Gutman, I.: Note on Estrada and $L$-Estrada indices of graphs. Bull. Cl. Sci. Math. Nat., Sci. Math. 34 (2009), 1-16. | MR

[2] Fiedler, M.: Algebraic conectivity of graphs. Czechoslovak Math. J. 23 (1973), 298-305. | MR

[3] Merris, R.: Laplacian matrices of graphs: A survey. Linear Algebra Appl. 197-198 (1994), 143-176. | MR | Zbl

[4] Mohar, B.: The Laplacian spectrum of graphs. Graph Theory, Combinatorics, and Applications, Vol. 2 Y. Alavi, G. Chartrand, O. R. Oellermann, A. J. Schwenk Wiley New York (1991), 871-898. | MR | Zbl

[5] Gutman, I., Das, K. C.: The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem. 50 (2004), 83-92. | MR | Zbl

[6] Gutman, I., Kiani, D., Mirzakhah, M., Zhou, B.: On incidence energy of a graph. Linear Algebra Appl. 431 (2009), 1223-1233. | MR | Zbl

[7] Gutman, I., Mohar, B.: The quasi-Wiener and the Kirchhoff indices coincide. J. Chem. Inf. Comput. Sci. 36 (1996), 982-985. | DOI

[8] Hong, Y., Zhang, X.-D.: Sharp upper and lower bounds for the largest eigenvalue of the Laplacian matrices of trees. Discrete Math. 296 (2005), 187-197. | DOI | MR

[9] Jooyandeh, M. R., Kiani, D., Mirzakhah, M.: Incidence energy of a graph. MATCH Commun. Math. Comput. Chem. 62 (2009), 561-572. | MR

[10] Klein, D. J., Randić, M.: Resistance distance. J. Math. Chem. 12 (1993), 81-95. | DOI | MR

[11] Lazi'c, M.: On the Laplacian energy of a graph. Czechoslovak Math. J. 56 (2006), 1207-1213. | DOI | MR

[12] Nikiforov, V.: The energy of graphs and matrices. J. Math. Anal. Appl. 326 (2007), 1472-1475. | DOI | MR | Zbl

[13] Palacios, J.: Foster's formulas via probability and the Kirchhoff index. Methodol. Comput. Appl. Probab. 6 (2004), 381-387. | DOI | MR

[14] Tian, G., Huang, T., Zhou, B.: A note on sum of powers of the Laplacian eigenvalues of bipartite graphs. Linear Algebra Appl. 430 (2009), 2503-2510. | MR | Zbl

[15] Todeschini, R., Consonni, V.: Handbook of Molecular Descriptors. Wiley-VCH Weinheim (2000).

[16] Zhou, B.: On sum of powers of the Laplacian eigenvalues of graphs. Linear Algebra Appl. 429 (2008), 2239-2246. | DOI | MR | Zbl

[17] Zhou, B.: On sum of powers of Laplacian eigenvalues and Laplacian Estrada index of graphs. MATCH Commun. Math. Comput. Chem. 62 (2009), 611-619. | MR

[18] Zhou, B.: More upper bounds for the incidence energy. MATCH Commun. Math. Comput. Chem. 64 (2010), 123-128. | MR

[19] Zhou, B.: Signless Laplacian spectral radius and Hamiltonicity. Linear Algebra Appl. 432 (2010), 566-570. | MR | Zbl

[20] Zhou, B., Gutman, I.: More on the Laplacian Estrada index. Appl. Anal. Discrete Math. 3 (2009), 371-378. | DOI | MR

[21] Zhou, B., Trinajstić, N.: A note on Kirchhoff index. Chem. Phys. Lett. 445 (2008), 120-123. | DOI

[22] Zhou, B., Trinajstić, N.: On resistance-distance and Kirchhoff index. J. Math. Chem. 46 (2009), 283-289. | DOI | MR

[23] Zhou, B., Trinajstić, N.: Mathematical properties of molecular descriptors based on distances. Croat. Chem. Acta 83 (2010), 227-242.