On the sum of powers of Laplacian eigenvalues of bipartite graphs
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 4, pp. 1161-1169
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
For a bipartite graph $G$ and a non-zero real $\alpha $, we give bounds for the sum of the $\alpha $th powers of the Laplacian eigenvalues of $G$ using the sum of the squares of degrees, from which lower and upper bounds for the incidence energy, and lower bounds for the Kirchhoff index and the Laplacian Estrada index are deduced.
For a bipartite graph $G$ and a non-zero real $\alpha $, we give bounds for the sum of the $\alpha $th powers of the Laplacian eigenvalues of $G$ using the sum of the squares of degrees, from which lower and upper bounds for the incidence energy, and lower bounds for the Kirchhoff index and the Laplacian Estrada index are deduced.
Classification :
05C50, 05C90
Keywords: Laplacian eigenvalues; incidence energy; Kirchhoff index; Laplacian Estrada index
Keywords: Laplacian eigenvalues; incidence energy; Kirchhoff index; Laplacian Estrada index
@article{CMJ_2010_60_4_a23,
author = {Zhou, Bo and Ili\'c, Aleksandar},
title = {On the sum of powers of {Laplacian} eigenvalues of bipartite graphs},
journal = {Czechoslovak Mathematical Journal},
pages = {1161--1169},
year = {2010},
volume = {60},
number = {4},
mrnumber = {2738977},
zbl = {1224.05333},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a23/}
}
Zhou, Bo; Ilić, Aleksandar. On the sum of powers of Laplacian eigenvalues of bipartite graphs. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 4, pp. 1161-1169. http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a23/