The Grothendieck property for injective tensor products of Banach spaces
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 4, pp. 1153-1159
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $X$ be a Banach space with the Grothendieck property, $Y$ a reflexive Banach space, and let $X\check{\otimes}_{\varepsilon} Y$ be the injective tensor product of $X$ and $Y$. \item {(a)} If either $X^{\ast \ast }$ or $Y$ has the approximation property and each continuous linear operator from $X^\ast $ to $Y$ is compact, then $X\check{\otimes}_{\varepsilon} Y$ has the Grothendieck property. \item {(b)} In addition, if $Y$ has an unconditional finite dimensional decomposition, then $X\check{\otimes}_{\varepsilon} Y$ has the Grothendieck property if and only if each continuous linear operator from $X^\ast $ to $Y$ is compact.
Let $X$ be a Banach space with the Grothendieck property, $Y$ a reflexive Banach space, and let $X\check{\otimes}_{\varepsilon} Y$ be the injective tensor product of $X$ and $Y$. \item {(a)} If either $X^{\ast \ast }$ or $Y$ has the approximation property and each continuous linear operator from $X^\ast $ to $Y$ is compact, then $X\check{\otimes}_{\varepsilon} Y$ has the Grothendieck property. \item {(b)} In addition, if $Y$ has an unconditional finite dimensional decomposition, then $X\check{\otimes}_{\varepsilon} Y$ has the Grothendieck property if and only if each continuous linear operator from $X^\ast $ to $Y$ is compact.
@article{CMJ_2010_60_4_a22,
author = {Ji, Donghai and Xue, Xiaoping and Bu, Qingying},
title = {The {Grothendieck} property for injective tensor products of {Banach} spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {1153--1159},
year = {2010},
volume = {60},
number = {4},
mrnumber = {2738976},
zbl = {1224.46034},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a22/}
}
TY - JOUR AU - Ji, Donghai AU - Xue, Xiaoping AU - Bu, Qingying TI - The Grothendieck property for injective tensor products of Banach spaces JO - Czechoslovak Mathematical Journal PY - 2010 SP - 1153 EP - 1159 VL - 60 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a22/ LA - en ID - CMJ_2010_60_4_a22 ER -
Ji, Donghai; Xue, Xiaoping; Bu, Qingying. The Grothendieck property for injective tensor products of Banach spaces. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 4, pp. 1153-1159. http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a22/