Keywords: {\it Bloch} space; composition operator; essential norm; difference; compactness
@article{CMJ_2010_60_4_a21,
author = {Yang, Ke-Ben and Zhou, Ze-Hua},
title = {Essential norm of the difference of composition operators on {Bloch} space},
journal = {Czechoslovak Mathematical Journal},
pages = {1139--1152},
year = {2010},
volume = {60},
number = {4},
mrnumber = {2738975},
zbl = {1220.47045},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a21/}
}
Yang, Ke-Ben; Zhou, Ze-Hua. Essential norm of the difference of composition operators on Bloch space. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 4, pp. 1139-1152. http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a21/
[1] Aron, R., Galindo, P., Lindsröm, M.: Connected components in the space of composition operators on $H^{\infty}$ functions of many variables. Int. Equ. Oper. Theory 45 (2003), 1-14. | DOI | MR
[2] Bonet, J., Lindström, M., Wolf, E.: Differences of composition operators between weighted Banach spaces of holomorphic functions. J. Australian Math. Soc. 84 (2008), 9-20. | DOI | MR
[3] Cowen, C. C., MacCluer, B. D.: Composition operators on spaces of analytic functions. CRC Press, Boca Raton (1995). | MR | Zbl
[4] Cowen, C., Gallardo-Gutiérrez, E.: A new class of operators and a description of adjoints of composition operators. J. Funct. Anal. 238 (2006), 447-462. | DOI | MR
[5] Fang, Z. S., Zhou, Z. H.: Differences of composition operators on the space of bounded analytic functions in the polydisc. Abstract Appl. Anal. 2008 (2008), 1-10. | MR | Zbl
[6] Fang, Z. S., Zhou, Z. H.: Differences of composition operators on the Bloch space in the polydisc. Bull. Australian Math. Soc. 79 (2009), 465-471. | DOI | MR | Zbl
[7] Gallardo-Gutiérrez, E. A., González, M. J., Nieminen, P. J., Saksman, E.: On the connected component of compact composition operators on the Hardy space. Advances Math. 219 (2008), 986-1001. | DOI | MR
[8] Gorkin, P., Mortini, R., Suarez, D.: Homotopic composition operators on $H^\infty(B^n)$, Function Spaces, Edwardsville, vol. IL, 177-188, 2002. Contemporary Mathematics, vol. 328, Americian Mathematical Society, Providence, RI, 2003. | MR
[9] Hosokawa, T., Izuchi, K., Ohno, S.: Topological structure of the space of weighted composition operators on $H^\infty$. Integral Equations Operator Theory 53 (2005), 509-526. | DOI | MR
[10] Hosokawa, T., Ohno, S.: Topological structures of the sets of composition operators on the Bloch spaces. J. Math. Anal. Appl. 314 (2006), 736-748. | DOI | MR | Zbl
[11] Hosokawa, T., Ohno, S.: Differences of composition operators on the Bloch spaces. J. Operator Theory 57 (2007), 229-242. | MR | Zbl
[12] Kriete, T., Moorhouse, J.: Linear relations in the Calkin algebra for composition operators. Transactions of the American Mathematical Society 359 (2007), 2915-2944. | DOI | MR | Zbl
[13] Lindström, M., Wolf, E.: Essential norm of the difference of weighted composition operators. Monatshefte für Mathematik 153 (2008), 133-143. | DOI | MR
[14] MacCluer, B. D.: Components in the space of composition operators. Integral Equations Operator Theory 12 (1989), 725-738. | DOI | MR | Zbl
[15] MacCluer, B., Ohno, S., Zhao, R.: Topological structure of the space of composition operators on $H^\infty$. Int. Eq. Oper. Theory 40 (2001), 481-494. | DOI | MR
[16] María, J., Vukoti'c, D.: Adjoints of composition operators on Hilbert spaces of analytic functions. J. Funct. Anal. 238 (2006), 298-312. | DOI | MR
[17] Montes-Rodríguez, A.: The essential norm of a composition operator on Bloch spaces. Pacific J. Math. 188 (1999), 339-351. | DOI | MR
[18] Moorhouse, J.: Compact differences of composition operators. J. Funct. Anal. 219 (2005), 70-92. | DOI | MR | Zbl
[19] Nieminen, Pekka J.: Compact differences of composition operators on Bloch and Lipschitz spaces. Comput. Methods Function Theory 7 (2007), 325-344. | DOI | MR | Zbl
[20] Nieminen, P. J., Saksman, E.: On compactness of the difference of composition operators. J. Math. Anal. Appl. 298 (2004), 501-522. | DOI | MR | Zbl
[21] Ohno, S., Takagi, H.: Some properties of weighted composition operators on algebras of analytic functions. J. Nonlin. Convex Anal. 2 (2001), 369-380. | MR | Zbl
[22] Shapiro, J. H.: Composition Operators and Classical Function Theory. Springer Verlag, New York (1993). | MR | Zbl
[23] Shapiro, J. H., Sundberg, C.: Isolation amongst the composition operators. Pacific J. Math. 145 (1990), 117-152. | DOI | MR | Zbl
[24] Toews, C.: Topological components of the set of composition operators on $H^{\infty}(B_N)$. Int. Equ. Oper. Theory 48 (2004), 265-280. | DOI | MR
[25] Wolf, E.: Differences of composition operators between weighted Banach spaces of holomorphic functions on the unit polydisk. Results in Mathematics 51 (2008), 361-372. | DOI | MR | Zbl
[26] Zhou, Z. H., Chen, R. Y.: On the composition operators on the Bloch space of several complex variables. Science in China (Series A) 48 (2005), 392-399. | MR
[27] Zhou, Z. H., Chen, R. Y.: Weighted composition operators from $F(p,q,s)$ to Bloch type spaces. Int. J. Math. 19 (2008), 899-926. | DOI | MR | Zbl
[28] Zhou, Z. H., Liu, Y.: The essential norms of composition operators between generalized Bloch spaces in the polydisk and its applications. J. Inequal. Appl. 2006 (2006), 1-22. | DOI | MR
[29] Zhou, Z. H., Shi, J. H.: Compactness of composition operators on the Bloch space in classical bounded symmetric domains. Michigan Math. J. 50 (2002), 381-405. | DOI | MR | Zbl
[30] Zhou, Z. H., Shi, J. H.: Compact composition operators on the Bloch space in polydiscs. Science in China (Series A) 44 (2001), 286-291. | DOI | MR | Zbl