On another extension of $q$-Pfaff-Saalschütz formula
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 4, pp. 1131-1137
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this paper we give an extension of $q$-Pfaff-Saalschütz formula by means of Andrews-Askey integral. Applications of the extension are also given, which include an extension of $q$-Chu-Vandermonde convolution formula and some other $q$-identities.
In this paper we give an extension of $q$-Pfaff-Saalschütz formula by means of Andrews-Askey integral. Applications of the extension are also given, which include an extension of $q$-Chu-Vandermonde convolution formula and some other $q$-identities.
Classification :
05A30, 33D05, 33D15
Keywords: Andrews-Askey integral; $_{r+1}\phi _r$ basic hypergeometric series; $q$-Pfaff-Saalschütz formula; $q$-Chu-Vandermonde convolution formula
Keywords: Andrews-Askey integral; $_{r+1}\phi _r$ basic hypergeometric series; $q$-Pfaff-Saalschütz formula; $q$-Chu-Vandermonde convolution formula
@article{CMJ_2010_60_4_a20,
author = {Wang, Mingjin},
title = {On another extension of $q${-Pfaff-Saalsch\"utz} formula},
journal = {Czechoslovak Mathematical Journal},
pages = {1131--1137},
year = {2010},
volume = {60},
number = {4},
mrnumber = {2738974},
zbl = {1224.05037},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a20/}
}
Wang, Mingjin. On another extension of $q$-Pfaff-Saalschütz formula. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 4, pp. 1131-1137. http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a20/
[1] Andrews, G. E., Askey, R.: Another $q$-extension of the beta function. Proc. Amer. Math. Soc. 81 (1981), 97-100. | MR | Zbl
[2] Andrews, G. E.: $q$-Series: Their Development and Applications in Analysis, Number Theory, Combinatorics, Physics and Computer Algebra. CBMS Regional Conference Lecture Series, vol. 66, Amer. Math, Providences, RI (1986). | MR
[3] Jackson, F. H.: On $q$-definite integrals. Quart. J. Pure and Appl. Math. 41 (1910), 193-203.
[4] Wang, M.: A remark on Andrews-Askey integral. J. Math. Anal. Appl. 341/2 (2008), 14870-1494. | DOI | MR | Zbl