Generalized derivations associated with Hochschild 2-cocycles on some algebras
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 4, pp. 909-932 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We investigate a new type of generalized derivations associated with Hochschild 2-cocycles which was introduced by A. Nakajima. We show that every generalized Jordan derivation of this type from CSL algebras or von Neumann algebras into themselves is a generalized derivation under some reasonable conditions. We also study generalized derivable mappings at zero point associated with Hochschild 2-cocycles on CSL algebras.
We investigate a new type of generalized derivations associated with Hochschild 2-cocycles which was introduced by A. Nakajima. We show that every generalized Jordan derivation of this type from CSL algebras or von Neumann algebras into themselves is a generalized derivation under some reasonable conditions. We also study generalized derivable mappings at zero point associated with Hochschild 2-cocycles on CSL algebras.
Classification : 47B47, 47L35
Keywords: CSL algebra; generalized derivation; generalized Jordan derivation; Hochschild 2-cocycle
@article{CMJ_2010_60_4_a2,
     author = {Li, Jiankui and Zhou, Jiren},
     title = {Generalized derivations associated with {Hochschild} 2-cocycles on some algebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {909--932},
     year = {2010},
     volume = {60},
     number = {4},
     mrnumber = {2738956},
     zbl = {1220.47143},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a2/}
}
TY  - JOUR
AU  - Li, Jiankui
AU  - Zhou, Jiren
TI  - Generalized derivations associated with Hochschild 2-cocycles on some algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 909
EP  - 932
VL  - 60
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a2/
LA  - en
ID  - CMJ_2010_60_4_a2
ER  - 
%0 Journal Article
%A Li, Jiankui
%A Zhou, Jiren
%T Generalized derivations associated with Hochschild 2-cocycles on some algebras
%J Czechoslovak Mathematical Journal
%D 2010
%P 909-932
%V 60
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a2/
%G en
%F CMJ_2010_60_4_a2
Li, Jiankui; Zhou, Jiren. Generalized derivations associated with Hochschild 2-cocycles on some algebras. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 4, pp. 909-932. http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a2/

[1] Ashraf, M., Rehman, N.-Ur: On Jordan generalized derivations in rings. Math. J. Okayama Univ. 42 (2000), 7-9. | MR

[2] Benkovič, D.: Jordan derivations and antiderivations on triangular matrices. Linear Algebra Appl. 397 (2005), 235-244. | MR

[3] Brešar, M.: Jordan derivations on semiprime rings. Proc. Am. Math. Soc. 104 (1988), 1103-1106. | DOI | MR

[4] Brešar, M.: Characterizations of derivations on some normed algebras with involution. J. Algebra 152 (1992), 454-462. | DOI | MR

[5] Hadwin, D., Li, J.: Local derivations and local automorphisms on some algebras. J. Oper. Theory 60 (2008), 29-44. | MR | Zbl

[6] Herstein, I. N.: Jordan derivations of prime rings. Proc. Am. Math. Soc. 8 (1958), 1104-1110. | DOI | MR | Zbl

[7] Hvala, B.: Generalized derivations in rings. Commun. Algebra 26 (1998), 1147-1166. | DOI | MR | Zbl

[8] Li, J., Pan, Z.: Annihilator-preserving maps, multipliers and local derivations. Linear Algebra Appl. 432 (2010), 5-13. | MR

[9] Li, J., Pan, Z., Xu, H.: Characterizations of isomorphisms and derivations of some algebras. J. Math. Anal. Appl. 332 (2007), 1314-1322. | DOI | MR | Zbl

[10] Longstaff, W., Panaia, O.: $\Cal J$-subspace lattices and subspace $\Cal M$-bases. Stud. Math. 139 (2000), 197-212. | MR

[11] Lu, F.: The Jordan structure of CSL algebras. Stud. Math. 190 (2009), 283-299. | DOI | MR | Zbl

[12] Nakajima, A.: Note on generalized Jordan derivations associated with Hochschild 2-cocycles of rings. Turk. J. Math. 30 (2006), 403-411. | MR

[13] Nakajima, A.: On categorical properties of generalized derivations. Sci. Math. 2 (1999), 345-352. | MR | Zbl

[14] Samei, E.: Approximately local derivations. J. Lond. Math. Soc. 71 (2005), 759-778. | DOI | MR | Zbl

[15] Zhang, J.: Jordan derivations on nest algebras. Acta Math. Sin. 41 (1998), 205-212 Chinese. | MR | Zbl

[16] Zhang, J., Yu, W.: Jordan derivations of triangular algebras. Linear Algebra Appl. 419 (2006), 251-255. | DOI | MR | Zbl