Keywords: $C$-Gorenstein projective module; $C$-Gorenstein injective module; $C$-Gorenstein flat module
@article{CMJ_2010_60_4_a19,
author = {Yang, Xiao Yan and Liu, Zhong Kui},
title = {$C${-Gorenstein} projective, injective and flat modules},
journal = {Czechoslovak Mathematical Journal},
pages = {1109--1129},
year = {2010},
volume = {60},
number = {4},
mrnumber = {2738973},
zbl = {1224.13014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a19/}
}
Yang, Xiao Yan; Liu, Zhong Kui. $C$-Gorenstein projective, injective and flat modules. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 4, pp. 1109-1129. http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a19/
[1] Christensen, L. W., Frankild, A., Holm, H.: On Gorenstein projective, injective and flat dimensions---a functorial description with applications. J. Algebra 302 (2006), 231-279. | DOI | MR | Zbl
[2] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra, de Gruyter Exp. Math. Walter de Gruyter and Co., Berlin. (2000). | MR
[3] Enochs, E. E., Iacos, A., Jenda, O. M. G.: Closure under transfinite extensions. Illinois J. Math. 51 (2007), 561-569. | DOI | MR
[4] Holm, H.: Gorenstein homological dimensions. J. Pure Appl. Algebra 189 (2004), 167-193. | DOI | MR | Zbl
[5] Holm, H., Jørgensen, P.: Cohen-Macaulay homological dimensions. Rend. Semin. Mat. Univ. Padova 117 (2007), 87-112. | MR
[6] Holm, H., Jørgensen, P.: Semi-dualizing modules and related Gorenstein homological dimensions. J. Pure Appl. Algebra 205 (2006), 423-445. | DOI | MR
[7] Holm, H., White, D.: Foxby equivalence over associative rings. J. Math. Kyoto Univ. 47 (2007), 781-808. | DOI | MR | Zbl
[8] Kasch, F.: Modules and Rings. London Math. Soc. Monogr. Academic press, London (1981). | MR | Zbl
[9] Lam, T. Y.: Lecture on Modules and Rings. Springer Verlag, New York (1999). | MR
[10] Yang, X., Liu, Z.: Gorenstein projective, injective and flat modules. J. Aust. Math. Soc 87 (2009), 395-407. | DOI | MR
[11] Osborne, M. S.: Basic Homological Algebra. Graduate Texts in Mathematics, Springer, New York, Berlin (2000). | MR | Zbl
[12] Park, S., Pusan, E. C.: Injective and projective properties of $R[x]$-modules. Czech. Math. J. 54 (2004), 573-578. | DOI | MR
[13] Rotman, J. J.: An Introductions to Homological Algebra. Academic Press, New York (1979). | MR
[14] Sazeedeh, R.: Strongly torsion free, copure flat and Matlis reflexive modules. J. Pure Appl. Algebra 192 (2004), 265-274. | DOI | MR | Zbl
[15] Trlifaj, J.: Ext and inverse limits. Illinois J. Math. 47 (2003), 529-538. | DOI | MR | Zbl