@article{CMJ_2010_60_4_a18,
author = {He, Yanfeng and Zhang, Wenpeng},
title = {An elliptic curve having large integral points},
journal = {Czechoslovak Mathematical Journal},
pages = {1101--1107},
year = {2010},
volume = {60},
number = {4},
mrnumber = {2738972},
zbl = {1224.11051},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a18/}
}
He, Yanfeng; Zhang, Wenpeng. An elliptic curve having large integral points. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 4, pp. 1101-1107. http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a18/
[1] Baker, A.: The Diophantine equation $y^2=ax^3+bx^2+cx+d$. J. Lond. Math. Soc. 43 (1968), 1-9. | DOI | MR | Zbl
[2] Stroeker, R. J., Tzanakis, N.: On the elliptic logarithm method for elliptic Diophantine equations: reflections and an improvement. Exp. Math. 8 (1999), 135-149. | DOI | MR | Zbl
[3] Stroeker, R. J., Tzanakis, N.: Computing all integer solutions of a genus $1$ equation. Math. Comput. 72 (2003), 1917-1933. | DOI | MR | Zbl
[4] Zagier, D.: Large integral points on elliptic curves. Math. Comput. 48 (1987), 425-436. | DOI | MR | Zbl
[5] Walker, D. T.: On the Diophantine equation $mx^2-ny^2=\pm 1$. Am. Math. Mon. 74 (1967), 504-513. | DOI | MR
[6] Walsh, G.: A note on a theorem of Ljunggren and the Diophantine equations $x^2-kxy^2+y^4=1,4$. Arch. Math. 73 (1999), 119-125. | DOI | MR