An elliptic curve having large integral points
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 4, pp. 1101-1107 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The main purpose of this paper is to prove that the elliptic curve $E\colon y^2=x^3+27x-62$ has only the integral points $(x, y)=(2, 0)$ and $(28844402, \pm 154914585540)$, using elementary number theory methods and some known results on quadratic and quartic Diophantine equations.
The main purpose of this paper is to prove that the elliptic curve $E\colon y^2=x^3+27x-62$ has only the integral points $(x, y)=(2, 0)$ and $(28844402, \pm 154914585540)$, using elementary number theory methods and some known results on quadratic and quartic Diophantine equations.
Classification : 11D25
Keywords: elliptic curve; integral point; Diophantine equation
@article{CMJ_2010_60_4_a18,
     author = {He, Yanfeng and Zhang, Wenpeng},
     title = {An elliptic curve having large integral points},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1101--1107},
     year = {2010},
     volume = {60},
     number = {4},
     mrnumber = {2738972},
     zbl = {1224.11051},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a18/}
}
TY  - JOUR
AU  - He, Yanfeng
AU  - Zhang, Wenpeng
TI  - An elliptic curve having large integral points
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 1101
EP  - 1107
VL  - 60
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a18/
LA  - en
ID  - CMJ_2010_60_4_a18
ER  - 
%0 Journal Article
%A He, Yanfeng
%A Zhang, Wenpeng
%T An elliptic curve having large integral points
%J Czechoslovak Mathematical Journal
%D 2010
%P 1101-1107
%V 60
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a18/
%G en
%F CMJ_2010_60_4_a18
He, Yanfeng; Zhang, Wenpeng. An elliptic curve having large integral points. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 4, pp. 1101-1107. http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a18/

[1] Baker, A.: The Diophantine equation $y^2=ax^3+bx^2+cx+d$. J. Lond. Math. Soc. 43 (1968), 1-9. | DOI | MR | Zbl

[2] Stroeker, R. J., Tzanakis, N.: On the elliptic logarithm method for elliptic Diophantine equations: reflections and an improvement. Exp. Math. 8 (1999), 135-149. | DOI | MR | Zbl

[3] Stroeker, R. J., Tzanakis, N.: Computing all integer solutions of a genus $1$ equation. Math. Comput. 72 (2003), 1917-1933. | DOI | MR | Zbl

[4] Zagier, D.: Large integral points on elliptic curves. Math. Comput. 48 (1987), 425-436. | DOI | MR | Zbl

[5] Walker, D. T.: On the Diophantine equation $mx^2-ny^2=\pm 1$. Am. Math. Mon. 74 (1967), 504-513. | DOI | MR

[6] Walsh, G.: A note on a theorem of Ljunggren and the Diophantine equations $x^2-kxy^2+y^4=1,4$. Arch. Math. 73 (1999), 119-125. | DOI | MR