A note on the powers of Cesàro bounded operators
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 4, pp. 1091-1100
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this note we give a negative answer to Zem�nek's question (1994) of whether it always holds that a Cesàro bounded operator $T$ on a Hilbert space with a single spectrum satisfies $\lim _{n \rightarrow \infty } \|T^{n+1} - T^n\| = 0.$
In this note we give a negative answer to Zem�nek's question (1994) of whether it always holds that a Cesàro bounded operator $T$ on a Hilbert space with a single spectrum satisfies $\lim _{n \rightarrow \infty } \|T^{n+1} - T^n\| = 0.$
@article{CMJ_2010_60_4_a17,
author = {L\'eka, Zolt\'an},
title = {A note on the powers of {Ces\`aro} bounded operators},
journal = {Czechoslovak Mathematical Journal},
pages = {1091--1100},
year = {2010},
volume = {60},
number = {4},
mrnumber = {2738971},
zbl = {1220.47014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a17/}
}
Léka, Zoltán. A note on the powers of Cesàro bounded operators. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 4, pp. 1091-1100. http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a17/