A note on the powers of Cesàro bounded operators
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 4, pp. 1091-1100 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this note we give a negative answer to Zem�nek's question (1994) of whether it always holds that a Cesàro bounded operator $T$ on a Hilbert space with a single spectrum satisfies $\lim _{n \rightarrow \infty } \|T^{n+1} - T^n\| = 0.$
In this note we give a negative answer to Zem�nek's question (1994) of whether it always holds that a Cesàro bounded operator $T$ on a Hilbert space with a single spectrum satisfies $\lim _{n \rightarrow \infty } \|T^{n+1} - T^n\| = 0.$
Classification : 47A35, 47B37, 47B38
Keywords: Volterra operator; stability of operators
@article{CMJ_2010_60_4_a17,
     author = {L\'eka, Zolt\'an},
     title = {A note on the powers of {Ces\`aro} bounded operators},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1091--1100},
     year = {2010},
     volume = {60},
     number = {4},
     mrnumber = {2738971},
     zbl = {1220.47014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a17/}
}
TY  - JOUR
AU  - Léka, Zoltán
TI  - A note on the powers of Cesàro bounded operators
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 1091
EP  - 1100
VL  - 60
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a17/
LA  - en
ID  - CMJ_2010_60_4_a17
ER  - 
%0 Journal Article
%A Léka, Zoltán
%T A note on the powers of Cesàro bounded operators
%J Czechoslovak Mathematical Journal
%D 2010
%P 1091-1100
%V 60
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a17/
%G en
%F CMJ_2010_60_4_a17
Léka, Zoltán. A note on the powers of Cesàro bounded operators. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 4, pp. 1091-1100. http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a17/

[1] Allan, G. R.: Power-bounded elements in a Banach algebra and a theorem of Gelfand. In: Automatic Continuity and Banach Algebras, Vol. 21 Proc. Centre Math. Anal. Austral. Nat. Univ. Canberra (1989), 1-12. | MR | Zbl

[2] Allan, G. R.: Power-bounded elements and radical Banach algebras. In: Linear Operators, Vol. 38 Banach Center Publ. J. Janas Warsaw (1997),9-16. | MR | Zbl

[3] Batty, C. J. K.: Asymptotic behaviour of semigroups of operators. In: Functional Analysis and Operator Theory, Vol. 30 J. Zemánek Banach Center Publ. Warsaw (1994), 35-52. | MR | Zbl

[4] Chill, R., Tomilov, Y.: Stability of operator semigroups: ideas and results. In: Perspectives in Operator Theory, Vol. 75 W. Arendt Banach Center Publ. Warsaw (2007), 71-109. | MR | Zbl

[5] Esterle, J.: Quasimultipliers, representation of $H^\infty$, and the closed ideal problem for commutative Banach algebras. Radical Banach Algebras and Automatic Continuity. Lecture Notes in Math., Vol. 975 (1983), Springer Berlin-Heidelberg-New York 66-162. | DOI | MR

[6] Halmos, P.: Hilbert Space Problem Book. Grad. Texts in Math. Mir Moskau (1970). | MR

[7] Katznelson, Y., Tzafriri, L.: On power bounded operators. J. Funct. Anal. 68 (1986), 313-328. | DOI | MR | Zbl

[8] Montes-Rodríguez, A., Sánchez-Álvarez, J., Zemánek, J.: Uniform Abel-Kreiss boundedness and the extremal behaviour of the Volterra operator. Proc. London Math. Soc. 91 (2005), 761-788. | MR

[9] Pytlik, T.: Analytic semigroups in Banach algebras and a theorem of Hille. Colloq. Math. 51 (1987), 287-294. | DOI | MR | Zbl

[10] Szegö, G.: Orthogonal Polynomials, 4th ed. Amer. Math. Soc. Colloq. Publ., Vol. 23. Amer. Math. Soc. Providence (1975). | MR

[11] Tomilov, Y., Zem�nek, J.: A new way of constructing examples in operator ergodic theory. Math. Proc. Camb. Philos. Soc. 137 (2004), 209-225. | DOI | MR

[12] Tsedenbayar, D.: On the power boundedness of certain Volterra operator pencils. Studia Math. 156 (2003), 59-66. | DOI | MR | Zbl

[13] Zemánek, J.: On the Gelfand-Hille theorems. In: Functional Analysis and Operator Theory, Vol. 30 J. Zemánek Banach Center Publ. Warsaw (1994), 369-385. | MR