@article{CMJ_2010_60_4_a17,
author = {L\'eka, Zolt\'an},
title = {A note on the powers of {Ces\`aro} bounded operators},
journal = {Czechoslovak Mathematical Journal},
pages = {1091--1100},
year = {2010},
volume = {60},
number = {4},
mrnumber = {2738971},
zbl = {1220.47014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a17/}
}
Léka, Zoltán. A note on the powers of Cesàro bounded operators. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 4, pp. 1091-1100. http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a17/
[1] Allan, G. R.: Power-bounded elements in a Banach algebra and a theorem of Gelfand. In: Automatic Continuity and Banach Algebras, Vol. 21 Proc. Centre Math. Anal. Austral. Nat. Univ. Canberra (1989), 1-12. | MR | Zbl
[2] Allan, G. R.: Power-bounded elements and radical Banach algebras. In: Linear Operators, Vol. 38 Banach Center Publ. J. Janas Warsaw (1997),9-16. | MR | Zbl
[3] Batty, C. J. K.: Asymptotic behaviour of semigroups of operators. In: Functional Analysis and Operator Theory, Vol. 30 J. Zemánek Banach Center Publ. Warsaw (1994), 35-52. | MR | Zbl
[4] Chill, R., Tomilov, Y.: Stability of operator semigroups: ideas and results. In: Perspectives in Operator Theory, Vol. 75 W. Arendt Banach Center Publ. Warsaw (2007), 71-109. | MR | Zbl
[5] Esterle, J.: Quasimultipliers, representation of $H^\infty$, and the closed ideal problem for commutative Banach algebras. Radical Banach Algebras and Automatic Continuity. Lecture Notes in Math., Vol. 975 (1983), Springer Berlin-Heidelberg-New York 66-162. | DOI | MR
[6] Halmos, P.: Hilbert Space Problem Book. Grad. Texts in Math. Mir Moskau (1970). | MR
[7] Katznelson, Y., Tzafriri, L.: On power bounded operators. J. Funct. Anal. 68 (1986), 313-328. | DOI | MR | Zbl
[8] Montes-Rodríguez, A., Sánchez-Álvarez, J., Zemánek, J.: Uniform Abel-Kreiss boundedness and the extremal behaviour of the Volterra operator. Proc. London Math. Soc. 91 (2005), 761-788. | MR
[9] Pytlik, T.: Analytic semigroups in Banach algebras and a theorem of Hille. Colloq. Math. 51 (1987), 287-294. | DOI | MR | Zbl
[10] Szegö, G.: Orthogonal Polynomials, 4th ed. Amer. Math. Soc. Colloq. Publ., Vol. 23. Amer. Math. Soc. Providence (1975). | MR
[11] Tomilov, Y., Zem�nek, J.: A new way of constructing examples in operator ergodic theory. Math. Proc. Camb. Philos. Soc. 137 (2004), 209-225. | DOI | MR
[12] Tsedenbayar, D.: On the power boundedness of certain Volterra operator pencils. Studia Math. 156 (2003), 59-66. | DOI | MR | Zbl
[13] Zemánek, J.: On the Gelfand-Hille theorems. In: Functional Analysis and Operator Theory, Vol. 30 J. Zemánek Banach Center Publ. Warsaw (1994), 369-385. | MR