A remark on the range of elementary operators
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 4, pp. 1065-1074 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $L(H)$ denote the algebra of all bounded linear operators on a separable infinite dimensional complex Hilbert space $H$ into itself. Given $A\in L(H)$, we define the elementary operator $\Delta _A\colon L(H)\longrightarrow L(H)$ by $\Delta _A(X)=AXA-X$. In this paper we study the class of operators $A\in L(H)$ which have the following property: $ATA=T$ implies $AT^{\ast }A=T^{\ast }$ for all trace class operators $T\in C_1(H)$. Such operators are termed generalized quasi-adjoints. The main result is the equivalence between this character and the fact that the ultraweak closure of the range of $\Delta _A$ is closed under taking adjoints. We give a characterization and some basic results concerning generalized quasi-adjoints operators.
Let $L(H)$ denote the algebra of all bounded linear operators on a separable infinite dimensional complex Hilbert space $H$ into itself. Given $A\in L(H)$, we define the elementary operator $\Delta _A\colon L(H)\longrightarrow L(H)$ by $\Delta _A(X)=AXA-X$. In this paper we study the class of operators $A\in L(H)$ which have the following property: $ATA=T$ implies $AT^{\ast }A=T^{\ast }$ for all trace class operators $T\in C_1(H)$. Such operators are termed generalized quasi-adjoints. The main result is the equivalence between this character and the fact that the ultraweak closure of the range of $\Delta _A$ is closed under taking adjoints. We give a characterization and some basic results concerning generalized quasi-adjoints operators.
Classification : 47A30, 47B10, 47B20, 47B47
Keywords: elementary operators; ultraweak closure; weak closure; quasi-adjoint operator
@article{CMJ_2010_60_4_a14,
     author = {Bouali, Said and Bouhafsi, Youssef},
     title = {A remark on the range of elementary operators},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1065--1074},
     year = {2010},
     volume = {60},
     number = {4},
     mrnumber = {2738968},
     zbl = {1220.47049},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a14/}
}
TY  - JOUR
AU  - Bouali, Said
AU  - Bouhafsi, Youssef
TI  - A remark on the range of elementary operators
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 1065
EP  - 1074
VL  - 60
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a14/
LA  - en
ID  - CMJ_2010_60_4_a14
ER  - 
%0 Journal Article
%A Bouali, Said
%A Bouhafsi, Youssef
%T A remark on the range of elementary operators
%J Czechoslovak Mathematical Journal
%D 2010
%P 1065-1074
%V 60
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a14/
%G en
%F CMJ_2010_60_4_a14
Bouali, Said; Bouhafsi, Youssef. A remark on the range of elementary operators. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 4, pp. 1065-1074. http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a14/

[1] Anderson, J. H., Bunce, J. W., Deddens, J. A., Williams, J. P.: $C^{\ast}$-algebras and derivation ranges. Acta. Sci. Math. (Szeged) 40 (1978), 211-227. | MR | Zbl

[2] Apostol, C., Fialkow, L.: Structural properties of elementary operators. Canad. J. Math. 38 (1986), 1485-1524. | DOI | MR | Zbl

[3] Berens, H., Finzel, M.: A problem in linear matrix approximation. Math. Nachr. 175 (1995), 33-46. | DOI | MR | Zbl

[4] Bouali, S., Bouhafsi, Y.: On the range of the elementary operator $X\mapsto AXA-X$. Math. Proc. Roy. Irish Acad. 108 (2008), 1-6. | MR | Zbl

[5] Dixmier, J.: Les $C^{\ast}$-algèbres et leurs représentations. Gauthier Villars, Paris (1964). | MR | Zbl

[6] Douglas, R. G.: On the operator equation $S^{\ast}XT=X$ and related topics. Acta. Sci. Math. (Szeged) 30 (1969), 19-32. | MR | Zbl

[7] Duggal, B. P.: On intertwining operators. Monatsh. Math. 106 (1988), 139-148. | DOI | MR | Zbl

[8] Duggal, B. P.: A remark on generalised Putnam-Fuglede theorems. Proc. Amer. Math. Soc. 129 (2001), 83-87. | DOI | MR | Zbl

[9] Embry, M. R., Rosenblum, M.: Spectra, tensor product, and linear operator equations. Pacific J. Math. 53 (1974), 95-107. | DOI | MR

[10] Fialkow, L.: Essential spectra of elementary operators. Trans. Amer. Math. Soc. 267 (1981), 157-174. | DOI | MR | Zbl

[11] Fialkow, A., Lobel, R.: Elementary mapping into ideals of operators. Illinois J. Math. 28 (1984), 555-578. | DOI | MR

[12] Fialkow, L.: Elementary operators and applications. (Editor: Matin Mathieu), Procceding of the International Workshop, World Scientific (1992), 55-113. | MR

[13] Fong, C. K., Sourour, A. R.: On the operator identity $\sum A_kXB_k=0$. Canad. J. Math. 31 (1979), 845-857. | DOI | MR | Zbl

[14] Genkai, Z.: On the operators $X\mapsto AX-XB$ and $ X\mapsto AXB-X$. Chinese J. Fudan Univ. Nat. Sci. 28 (1989), 148-154.

[15] Magajna, B.: The norm of a symmetric elementary operator. Proc. Amer. Math. Soc. 132 (2004), 1747-1754. | DOI | MR | Zbl

[16] Mathieu, M.: Rings of quotients of ultraprime Banach algebras with applications to elementary operators. Proc. Centre Math. Anal., Austral. Nat. Univ. Canberra 21 (1989), 297-317. | MR | Zbl

[17] Mathieu, M.: The norm problem for elementary operators. Recent progress in functional analysis (Valencia 2000) 363-368 North-Holland Math. Stud. 189, North-Holland, Amsterdam (2001). | DOI | MR | Zbl

[18] Stachò, L. L., Zalar, B.: On the norm of Jordan elementary operators in standard operator algebra. Publ. Math. Debrecen 49 (1996), 127-134. | MR