Keywords: Novikov algebra; Novikov superalgebra; type $N$; type $S$
@article{CMJ_2010_60_4_a1,
author = {Zhu, Fuhai and Chen, Zhiqi},
title = {Novikov superalgebras with $A_0=A_1A_1$},
journal = {Czechoslovak Mathematical Journal},
pages = {903--907},
year = {2010},
volume = {60},
number = {4},
mrnumber = {2738955},
zbl = {1224.17010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a1/}
}
Zhu, Fuhai; Chen, Zhiqi. Novikov superalgebras with $A_0=A_1A_1$. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 4, pp. 903-907. http://geodesic.mathdoc.fr/item/CMJ_2010_60_4_a1/
[1] Balinskii, A. A., Novikov, S. P.: Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras. Sov. Math. Dokl. 32 (1985), 228-231. | MR | Zbl
[2] Gel'fand, I. M., Dorfman, I. Ya.: Hamiltonian operators and algebraic structures related to them. Funct. Anal. Appl. 13 (1980), 248-262. | DOI | Zbl
[3] Gel'fand, I. M., Dorfman, I. Y.: The Schouten brackets and Hamiltonian operators. Funct. Anal. Appl. 14 (1981), 223-226. | DOI | MR
[4] Gel'fand, I. M., Dorfman, I. Y.: Hamiltonian operators and infinite-dimensional Lie algebras. Funct. Anal. Appl. 15 (1982), 173-187. | DOI | MR | Zbl
[5] Kac, V. G.: Vertex Algebras for Beginners. University Lecture Series, 10. American Mathematical Society (AMS) Providence (1998). | MR
[6] Kang, Y. F., Chen, Z. Q.: Novikov superalgebras in low dimensions. J. Nonlinear Math. Phys 16 (2009), 251-257. | DOI | MR
[7] Xu, X. P.: Quadratic conformal superalgebras. J. Algebra 231 (2000), 1-38. | DOI | MR | Zbl
[8] Xu, X. P.: Introduction to Vertex Operator Superalgebras and Their Modules. Kluwer Dordercht (1998). | MR | Zbl
[9] Xu, X. P.: Hamiltonian operators and associative algebras with a derivation. Lett. Math. Phys. 33 (1995), 1-6. | DOI | MR | Zbl
[10] Xu, X. P.: Hamiltonian superoperators. J. Phys A. Math. Gen. 28 (1995), 1681-1698. | MR | Zbl