On the inhomogeneous nonlinear Schrödinger equation with harmonic potential and unbounded coefficient
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 3, pp. 715-736 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

By deriving a variant of interpolation inequality, we obtain a sharp criterion for global existence and blow-up of solutions to the inhomogeneous nonlinear Schrödinger equation with harmonic potential $$ {\rm i}\varphi _t=-\triangle \varphi +|x|^2\varphi -|x|^b|\varphi |^{p-2}\varphi . $$ We also prove the existence of unstable standing-wave solutions via blow-up under certain conditions on the unbounded inhomogeneity and the power of nonlinearity, as well as the frequency of the wave.
By deriving a variant of interpolation inequality, we obtain a sharp criterion for global existence and blow-up of solutions to the inhomogeneous nonlinear Schrödinger equation with harmonic potential $$ {\rm i}\varphi _t=-\triangle \varphi +|x|^2\varphi -|x|^b|\varphi |^{p-2}\varphi . $$ We also prove the existence of unstable standing-wave solutions via blow-up under certain conditions on the unbounded inhomogeneity and the power of nonlinearity, as well as the frequency of the wave.
Classification : 35J20, 35Q55
Keywords: interpolation inequality; inhomogeneous nonlinear Schrödinger equation; harmonic potential; blow-up; global existence; standing waves; strong instability
@article{CMJ_2010_60_3_a9,
     author = {Chen, Jianqing},
     title = {On the inhomogeneous nonlinear {Schr\"odinger} equation with harmonic potential and unbounded coefficient},
     journal = {Czechoslovak Mathematical Journal},
     pages = {715--736},
     year = {2010},
     volume = {60},
     number = {3},
     mrnumber = {2672412},
     zbl = {1224.35083},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a9/}
}
TY  - JOUR
AU  - Chen, Jianqing
TI  - On the inhomogeneous nonlinear Schrödinger equation with harmonic potential and unbounded coefficient
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 715
EP  - 736
VL  - 60
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a9/
LA  - en
ID  - CMJ_2010_60_3_a9
ER  - 
%0 Journal Article
%A Chen, Jianqing
%T On the inhomogeneous nonlinear Schrödinger equation with harmonic potential and unbounded coefficient
%J Czechoslovak Mathematical Journal
%D 2010
%P 715-736
%V 60
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a9/
%G en
%F CMJ_2010_60_3_a9
Chen, Jianqing. On the inhomogeneous nonlinear Schrödinger equation with harmonic potential and unbounded coefficient. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 3, pp. 715-736. http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a9/

[1] Baym, G., Pethick, C. J.: Ground state properties of magnetically trapped Bose-condensed rubidium gas. Phys. Rev. Lett. 76 (1996), 6-9. | DOI

[2] Benjamin, T. B.: The stability of solitary waves. Proc. Royal Soc. London, Ser. A. 328 (1972), 153-183. | MR

[3] Berestycki, H., Cazenave, T.: Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéarires. C. R. Acad. Sci. Paris I 293 (1981), 489-492. | MR

[4] Bona, J. L.: On the stability theory of solitary waves. Proc. Royal Soc. London, Ser. A. 344 (1975), 363-374. | MR | Zbl

[5] Caffarelli, L., Kohn, R., Nirenberg, L.: First order interpolation inequalities with weights. Compositio Math. 53 (1984), 259-275. | MR | Zbl

[6] Cazenave, T.: An Introduction to Nonlinear Schrödinger Equations. Textos de Metodos Matematicos, 22, Rio de Janeiro (1989).

[7] Cazenave, T., Lions, P. L.: Orbital satbility of standing waves for some nonlinear Schrödinger equations. Comm. Math. Phys. 85 (1982), 549-561. | DOI | MR

[8] Chen, J., Guo, B.: Strong instability of standing waves for a nonlocal Schrödinger equation. Phys. D 227 (2007), 142-148. | DOI | MR | Zbl

[9] Chen, J., Guo, B.: Sharp global existence and blowing up results for inhomogeneous Schrödinger equations. Discrete Contin. Dynam. Systems 8 (2007), 357-367. | DOI | MR | Zbl

[10] Fibich, G., Wang, X. P.: Stability of solitary waves for nonlinear Schrödinger equations with inhomogeneous nonlinearity. Phys. D. 175 (2003), 96-108. | DOI | MR

[11] Fukuizumi, R.: Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete Contin. Dyn. Syst. 7 (2001), 525-544. | DOI | MR | Zbl

[12] Fukuizumi, R., Ohta, M.: Stability of standing waves for nonlinear Schrödinger equations with potentials. Differential Integral Equations 16 (2003), 111-128. | MR | Zbl

[13] Fukuizumi, R., Ohta, M.: Instability of standing waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities. J. Math. Kyoto Univ. 45 (2005), 145-158. | DOI | MR

[14] Gill, T. S.: Optical guiding of laser beam in nonuniform plasma. Pramana Journal of Physics 55 (2000), 845-852.

[15] Ginibre, J., Velo, G.: On the class of nonlinear Schrödinger equations I, II. J. Funct. Anal. 32 (1979), 1-32, 33-71. | DOI | MR

[16] Glassey, R. T.: On the blowing-up of solutions to the Cauchy problem for the nonlinear Schrödinger equation. J. Math. Phys. 18 (1977), 1794-1797. | DOI | MR

[17] Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry, I. J. Funct. Anal. 74 (1987), 160-197. | DOI | MR | Zbl

[18] Liu, C. S., Tripathi, V. K.: Laser guiding in an axially nonuniform plasma channel. Phys. Plasmas 1 (1994), 3100-3103. | DOI

[19] Liu, Y., Wang, X. P., Wang, K.: Instability of standing waves of the Schrödinger equations with inhomogeneous nonlinearity. Trans. Amer. Math. Soc. 358 (2006), 2105-2122. | DOI | MR

[20] Merle, F.: Nonexistence of minimal blow up solutions of equations $iu_t=-\triangle u-K(x) |u|^{4/N}u$ in $\Bbb R^N$. Ann. Inst. H. Poincaré, Phys. Théor. 64 (1996), 33-85. | MR | Zbl

[21] Yong-Geun, Oh: Cauchy problem and Ehrenfest's law of nonlinear Schrödinger equation with potentials. J. Differential Equations 81 (1989), 255-274. | DOI | MR

[22] Rose, H. A., Weinstein, M. I.: On the bound states of the nonlinear Schrödinger equation with linear potential. Phys. D 30 (1988), 207-218. | DOI | MR

[23] Rother, W.: Some existence results for the equation $-\triangle u+K(x)u^p=0$. Comm. Partial Differential Equations 15 (1990), 1461-1473. | DOI | MR

[24] Shatah, J., Strauss, W.: Instability of nonlinear bound states. Comm. Math. Phys. 100 (1985), 173-190. | DOI | MR | Zbl

[25] Sintzoff, P., Willem, M.: A semilinear elliptic equation on $\Bbb R^N$ with unbounded coefficients. Variational and topological methods in the study of nonlinear phenomena 49 (Pisa 2000) 105-113 Birkhauser, Boston, 2002. | MR

[26] Strauss, W.: Existence of solitary waves in higher dimensions. Comm. Math. Phys. 55 (1977), 149-162. | DOI | MR | Zbl

[27] Tsurumi, T., Waditi, M.: Collapses of wave functions in multidimensional nonlinear Schrödinger equations under harmonic potential. J. Phys. Soc. Japan 66 (1997), 3031-3034. | DOI

[28] Tsurumi, T., Waditi, M.: Instability of the Bose-Einstein condensate under magnetic trap. J. Phys. Soc. Japan 66 (1997), 3035-3039.

[29] Wang, Y.: Strong instability of standing waves for Hartree equation with harmonic potential. Phys. D 237 (2008), 998-1005. | DOI | MR | Zbl

[30] Weinstein, M. I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Comm. Math. Phys. 87 (1983), 567-576. | DOI | MR | Zbl

[31] Willem, M.: Minimax Theorems. Progress in Nonlinear Differential Equations and Their Applications, 24, Birkhäuser, Boston (1996). | MR | Zbl

[32] Zhang, J.: Sharp threshold for global existence and blowup in nonlinear Schrödinger equation with harmonic potential. Comm. Partial Differential Equations 30 (2005), 1429-1443. | DOI | MR