Some properties of certain subclasses of analytic functions with negative coefficients by using generalized Ruscheweyh derivative operator
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 3, pp. 699-713 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

By making use of the known concept of neighborhoods of analytic functions we prove several inclusions associated with the $(j,\delta )$-neighborhoods of various subclasses of starlike and convex functions of complex order $b$ which are defined by the generalized Ruscheweyh derivative operator. Further, partial sums and integral means inequalities for these function classes are studied. Relevant connections with some other recent investigations are also pointed out.
By making use of the known concept of neighborhoods of analytic functions we prove several inclusions associated with the $(j,\delta )$-neighborhoods of various subclasses of starlike and convex functions of complex order $b$ which are defined by the generalized Ruscheweyh derivative operator. Further, partial sums and integral means inequalities for these function classes are studied. Relevant connections with some other recent investigations are also pointed out.
Classification : 30C45
Keywords: neighborhoods; partial sums; integral means; generalized Ruscheweyh derivative
@article{CMJ_2010_60_3_a8,
     author = {Deniz, Erhan and Orhan, Halit},
     title = {Some properties of certain subclasses of analytic functions with negative coefficients by using generalized {Ruscheweyh} derivative operator},
     journal = {Czechoslovak Mathematical Journal},
     pages = {699--713},
     year = {2010},
     volume = {60},
     number = {3},
     mrnumber = {2672411},
     zbl = {1224.30045},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a8/}
}
TY  - JOUR
AU  - Deniz, Erhan
AU  - Orhan, Halit
TI  - Some properties of certain subclasses of analytic functions with negative coefficients by using generalized Ruscheweyh derivative operator
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 699
EP  - 713
VL  - 60
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a8/
LA  - en
ID  - CMJ_2010_60_3_a8
ER  - 
%0 Journal Article
%A Deniz, Erhan
%A Orhan, Halit
%T Some properties of certain subclasses of analytic functions with negative coefficients by using generalized Ruscheweyh derivative operator
%J Czechoslovak Mathematical Journal
%D 2010
%P 699-713
%V 60
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a8/
%G en
%F CMJ_2010_60_3_a8
Deniz, Erhan; Orhan, Halit. Some properties of certain subclasses of analytic functions with negative coefficients by using generalized Ruscheweyh derivative operator. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 3, pp. 699-713. http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a8/

[1] Ahuja, O. P.: Fekete-Szegö Problem for a unified class of analytic functions. Panam. Math. J. 7 (1997), 67-78. | MR | Zbl

[2] Ahuja, O. P.: Integral operators of certain univalent functions. Int. J. Math. Math. Sci. 8 (1985), 653-662. | DOI | MR | Zbl

[3] Ahuja, O. P.: Hadamard products of analytic functions defined by Ruscheweyh derivatives. In: Current Topics in Analytic Function Theory H. M. Srivastava, S. Owa World Scientific Publishing Company Singapore (1992), 13-28. | MR | Zbl

[4] Altintaş, O., Owa, S.: Neighborhoods of certain analytic functions with negative coefficients. Int. J. Math. Math. Sci. 19 (1996), 797-800. | DOI | MR

[5] Aouf, M. K.: Neighborhoods of certain classes of analytic functions with negative coefficients. Int. J. Math. Math. Sci. 2006 (2006), 1-6. | DOI | MR | Zbl

[6] Cho, N. C., Owa, S.: Partial sums of meromorphic functions. JIPAM, J. Ineq. Pure Appl. Math. 5 (2004), Art. 30 Electronic only. | MR

[7] Goodman, A. W.: Univalent functions and nonanalytic curves. Proc. Am. Math. Soc. 8 (1957), 598-601. | DOI | MR

[8] Keerthi, B. S., Gangadharan, A., Srivastava, H. M.: Neighborhoods of certain subclasses of analytic functions of complex order with negative coefficients. Math. Comput. Modelling 47 (2008), 271-277. | DOI | MR | Zbl

[9] Latha, S., Shivarudrappa, L.: Partial sums of meromorphic functions. JIPAM, J. Ineq. Pure Appl. Math. 7 (2006), Art. 140 Electronic only. | MR

[10] Littlewood, J. E.: On inequalities in the theory of functions. Proc. Lond. Math. Soc. 23 (1925), 481-519. | DOI

[11] Murugunsundaramoorthy, G., Srivastava, H. M.: Neighborhoods of certain classes of analytic functions of complex order. JIPAM, J. Ineq. Pure Appl. Math. 5 (2004), Art. 24 Electronic only. | MR

[12] Nasr, M. A., Aouf, M. K.: Starlike function of complex order. J. Nat. Sci. Math. 25 (1985), 1-12. | MR | Zbl

[13] Orhan, H.: On neighborhoods of analytic functions defined by using Hadamard product. Novi Sad J. Math. 37 (2007), 17-25. | MR | Zbl

[14] Orhan, H.: Neighborhoods of a certain class of $p$-valent functions with negative coefficients defined by using a differential operator. Math. Ineq. Appl. 12 (2009), 335-349. | MR | Zbl

[15] Owa, S., Sekine, T.: Integral means of analytic functions. J. Math. Anal. Appl. 304 (2005), 772-782. | DOI | MR | Zbl

[16] Raina, R. K., Bansal, D.: Some properties of a new class of analytic functions defined in terms of a Hadamard product. JIPAM, J. Ineq. Pure Appl. Math. 9 (2008), Art. 22 Electronic only. | MR | Zbl

[17] Robertson, M. S.: On the theory of univalent functions. Ann. Math. 37 (1936), 374-408. | DOI | MR | Zbl

[18] Ruscheweyh, S.: Neighborhoods of univalent functions. Proc. Am. Math. Soc. 81 (1981), 521-527. | DOI | MR | Zbl

[19] Ruscheweyh, S.: New criteria for univalent functions. Proc. Am. Math. Soc. 49 (1975), 109-115. | DOI | MR | Zbl

[20] Silverman, H.: Univalent functions with negative coefficients. Proc. Am. Math. Soc. 51 (1975), 109-116. | DOI | MR | Zbl

[21] Silverman, H.: Neighborhoods of classes of analytic functions. Far East J. Math. Sci. 3 (1995), 165-169. | MR | Zbl

[22] Silverman, H.: Partial sums of starlike and convex functions. J. Math. Anal. Appl. 209 (1997), 221-227. | DOI | MR | Zbl

[23] Silverman, H.: Subclasses of starlike functions. Rev. Roum. Math. Pures Appl. 23 (1978), 1093-1099. | MR | Zbl

[24] Silverman, H., Silvia, E. M.: Subclasses of starlike functions subordinate to convex functions. Can. J. Math. 37 (1985), 48-61. | DOI | MR | Zbl

[25] Sohi, N. S., Singh, L. P.: A class of bounded starlike functions of complex order. Indian J. Pure Appl. Math. 33 (1991), 29-35. | MR | Zbl

[26] Srivastava, H. M., Orhan, H.: Coefficient inequalities and inclusion relations for some families of analytic and multivalent functions. Appl. Math. Lett. 20 (2007), 686-691. | DOI | MR | Zbl

[27] Srivastava, H. M., (Eds.), S. Owa: Current Topics in Analytic Function Theory. World Scientific Publishing Company Singapore-New Jersey-London-Hong Kong (1992). | MR | Zbl

[28] Wiatrowski, P.: The coefficients of a certain family of holomorphic functions. Zeszyty Nauk. Univ. Lodz, Nauki Mat. Przyrod. Ser. II, Zeszyt 39 (1971), 75-85 Polish. | MR