Keywords: neighborhoods; partial sums; integral means; generalized Ruscheweyh derivative
@article{CMJ_2010_60_3_a8,
author = {Deniz, Erhan and Orhan, Halit},
title = {Some properties of certain subclasses of analytic functions with negative coefficients by using generalized {Ruscheweyh} derivative operator},
journal = {Czechoslovak Mathematical Journal},
pages = {699--713},
year = {2010},
volume = {60},
number = {3},
mrnumber = {2672411},
zbl = {1224.30045},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a8/}
}
TY - JOUR AU - Deniz, Erhan AU - Orhan, Halit TI - Some properties of certain subclasses of analytic functions with negative coefficients by using generalized Ruscheweyh derivative operator JO - Czechoslovak Mathematical Journal PY - 2010 SP - 699 EP - 713 VL - 60 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a8/ LA - en ID - CMJ_2010_60_3_a8 ER -
%0 Journal Article %A Deniz, Erhan %A Orhan, Halit %T Some properties of certain subclasses of analytic functions with negative coefficients by using generalized Ruscheweyh derivative operator %J Czechoslovak Mathematical Journal %D 2010 %P 699-713 %V 60 %N 3 %U http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a8/ %G en %F CMJ_2010_60_3_a8
Deniz, Erhan; Orhan, Halit. Some properties of certain subclasses of analytic functions with negative coefficients by using generalized Ruscheweyh derivative operator. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 3, pp. 699-713. http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a8/
[1] Ahuja, O. P.: Fekete-Szegö Problem for a unified class of analytic functions. Panam. Math. J. 7 (1997), 67-78. | MR | Zbl
[2] Ahuja, O. P.: Integral operators of certain univalent functions. Int. J. Math. Math. Sci. 8 (1985), 653-662. | DOI | MR | Zbl
[3] Ahuja, O. P.: Hadamard products of analytic functions defined by Ruscheweyh derivatives. In: Current Topics in Analytic Function Theory H. M. Srivastava, S. Owa World Scientific Publishing Company Singapore (1992), 13-28. | MR | Zbl
[4] Altintaş, O., Owa, S.: Neighborhoods of certain analytic functions with negative coefficients. Int. J. Math. Math. Sci. 19 (1996), 797-800. | DOI | MR
[5] Aouf, M. K.: Neighborhoods of certain classes of analytic functions with negative coefficients. Int. J. Math. Math. Sci. 2006 (2006), 1-6. | DOI | MR | Zbl
[6] Cho, N. C., Owa, S.: Partial sums of meromorphic functions. JIPAM, J. Ineq. Pure Appl. Math. 5 (2004), Art. 30 Electronic only. | MR
[7] Goodman, A. W.: Univalent functions and nonanalytic curves. Proc. Am. Math. Soc. 8 (1957), 598-601. | DOI | MR
[8] Keerthi, B. S., Gangadharan, A., Srivastava, H. M.: Neighborhoods of certain subclasses of analytic functions of complex order with negative coefficients. Math. Comput. Modelling 47 (2008), 271-277. | DOI | MR | Zbl
[9] Latha, S., Shivarudrappa, L.: Partial sums of meromorphic functions. JIPAM, J. Ineq. Pure Appl. Math. 7 (2006), Art. 140 Electronic only. | MR
[10] Littlewood, J. E.: On inequalities in the theory of functions. Proc. Lond. Math. Soc. 23 (1925), 481-519. | DOI
[11] Murugunsundaramoorthy, G., Srivastava, H. M.: Neighborhoods of certain classes of analytic functions of complex order. JIPAM, J. Ineq. Pure Appl. Math. 5 (2004), Art. 24 Electronic only. | MR
[12] Nasr, M. A., Aouf, M. K.: Starlike function of complex order. J. Nat. Sci. Math. 25 (1985), 1-12. | MR | Zbl
[13] Orhan, H.: On neighborhoods of analytic functions defined by using Hadamard product. Novi Sad J. Math. 37 (2007), 17-25. | MR | Zbl
[14] Orhan, H.: Neighborhoods of a certain class of $p$-valent functions with negative coefficients defined by using a differential operator. Math. Ineq. Appl. 12 (2009), 335-349. | MR | Zbl
[15] Owa, S., Sekine, T.: Integral means of analytic functions. J. Math. Anal. Appl. 304 (2005), 772-782. | DOI | MR | Zbl
[16] Raina, R. K., Bansal, D.: Some properties of a new class of analytic functions defined in terms of a Hadamard product. JIPAM, J. Ineq. Pure Appl. Math. 9 (2008), Art. 22 Electronic only. | MR | Zbl
[17] Robertson, M. S.: On the theory of univalent functions. Ann. Math. 37 (1936), 374-408. | DOI | MR | Zbl
[18] Ruscheweyh, S.: Neighborhoods of univalent functions. Proc. Am. Math. Soc. 81 (1981), 521-527. | DOI | MR | Zbl
[19] Ruscheweyh, S.: New criteria for univalent functions. Proc. Am. Math. Soc. 49 (1975), 109-115. | DOI | MR | Zbl
[20] Silverman, H.: Univalent functions with negative coefficients. Proc. Am. Math. Soc. 51 (1975), 109-116. | DOI | MR | Zbl
[21] Silverman, H.: Neighborhoods of classes of analytic functions. Far East J. Math. Sci. 3 (1995), 165-169. | MR | Zbl
[22] Silverman, H.: Partial sums of starlike and convex functions. J. Math. Anal. Appl. 209 (1997), 221-227. | DOI | MR | Zbl
[23] Silverman, H.: Subclasses of starlike functions. Rev. Roum. Math. Pures Appl. 23 (1978), 1093-1099. | MR | Zbl
[24] Silverman, H., Silvia, E. M.: Subclasses of starlike functions subordinate to convex functions. Can. J. Math. 37 (1985), 48-61. | DOI | MR | Zbl
[25] Sohi, N. S., Singh, L. P.: A class of bounded starlike functions of complex order. Indian J. Pure Appl. Math. 33 (1991), 29-35. | MR | Zbl
[26] Srivastava, H. M., Orhan, H.: Coefficient inequalities and inclusion relations for some families of analytic and multivalent functions. Appl. Math. Lett. 20 (2007), 686-691. | DOI | MR | Zbl
[27] Srivastava, H. M., (Eds.), S. Owa: Current Topics in Analytic Function Theory. World Scientific Publishing Company Singapore-New Jersey-London-Hong Kong (1992). | MR | Zbl
[28] Wiatrowski, P.: The coefficients of a certain family of holomorphic functions. Zeszyty Nauk. Univ. Lodz, Nauki Mat. Przyrod. Ser. II, Zeszyt 39 (1971), 75-85 Polish. | MR