Keywords: Laplacian eigenvalue; multiplicity; tree; characteristic polynomial
@article{CMJ_2010_60_3_a7,
author = {Guo, Ji-Ming and Feng, Lin and Zhang, Jiong-Ming},
title = {On the multiplicity of {Laplacian} eigenvalues of graphs},
journal = {Czechoslovak Mathematical Journal},
pages = {689--698},
year = {2010},
volume = {60},
number = {3},
mrnumber = {2672410},
zbl = {1224.05297},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a7/}
}
Guo, Ji-Ming; Feng, Lin; Zhang, Jiong-Ming. On the multiplicity of Laplacian eigenvalues of graphs. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 3, pp. 689-698. http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a7/
[1] Cvetković, D. M., Doob, M., Sachs, H.: Spectra of Graphs-Theory and Application. Deutscher Verlag der Wissenschaften - Academic Press, Berlin-New York, 1980; second edition 1982; third edition, Johann Ambrosius Barth Verlag, Heidelberg-Leipzig (1995).
[2] Faria, I.: Permanental roots and the star degree of a graph. Linear Algebra Appl. 64 (1985), 255-265. | DOI | MR | Zbl
[3] Grone, R., Merris, R., Sunder, V. S.: The Laplacian spectrum of a graph. SIAM J. Matrix Anal. Appl. 11 (1990), 218-238. | DOI | MR | Zbl
[4] Grone, R., Merris, R.: The Laplacian spectrum of a graph II*. SIAM J. Discrete Math. 7 (1994), 221-229. | DOI | MR | Zbl
[5] Guo, J. M.: On the second largest Laplacian eigenvalue of trees. Linear Alg. Appl. 404 (2005), 251-261. | DOI | MR | Zbl
[6] Mohar, B.: The Laplacian spectrum of graphs. Graph Theory, Combinatorics, and Applications 2 (1991), 871-898. | MR | Zbl
[7] Shao, J. Y., Guo, J. M., Shan, H. Y.: The ordering of trees and connected graphs by algebraic connectivity. Linear Alg. Appl. 428 (2008), 1421-1438. | MR | Zbl