Global and non-global existence of solutions to a nonlocal and degenerate quasilinear parabolic system
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 3, pp. 675-688 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The paper deals with positive solutions of a nonlocal and degenerate quasilinear parabolic system not in divergence form $$ u_t = v^p\biggl (\Delta u + a\int _\Omega u \,{\rm d} x\biggr ),\quad v_t =u^q\biggl (\Delta v + b\int _\Omega v \,{\rm d} x\biggr ) $$ with null Dirichlet boundary conditions. By using the standard approximation method, we first give a series of fine a priori estimates for the solution of the corresponding approximate problem. Then using the diagonal method, we get the local existence and the bounds of the solution $(u,v)$ to this problem. Moreover, a necessary and sufficient condition for the non-global existence of the solution is obtained. Under some further conditions on the initial data, we get criteria for the finite time blow-up of the solution.
The paper deals with positive solutions of a nonlocal and degenerate quasilinear parabolic system not in divergence form $$ u_t = v^p\biggl (\Delta u + a\int _\Omega u \,{\rm d} x\biggr ),\quad v_t =u^q\biggl (\Delta v + b\int _\Omega v \,{\rm d} x\biggr ) $$ with null Dirichlet boundary conditions. By using the standard approximation method, we first give a series of fine a priori estimates for the solution of the corresponding approximate problem. Then using the diagonal method, we get the local existence and the bounds of the solution $(u,v)$ to this problem. Moreover, a necessary and sufficient condition for the non-global existence of the solution is obtained. Under some further conditions on the initial data, we get criteria for the finite time blow-up of the solution.
Classification : 35D55, 35K05, 35K59, 35K65, 45K05
Keywords: strongly coupled; degenerate parabolic system; nonlocal source; global existence; blow-up
@article{CMJ_2010_60_3_a6,
     author = {Chen, Yujuan},
     title = {Global and non-global existence of solutions to a nonlocal and degenerate quasilinear parabolic system},
     journal = {Czechoslovak Mathematical Journal},
     pages = {675--688},
     year = {2010},
     volume = {60},
     number = {3},
     mrnumber = {2672409},
     zbl = {1224.35157},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a6/}
}
TY  - JOUR
AU  - Chen, Yujuan
TI  - Global and non-global existence of solutions to a nonlocal and degenerate quasilinear parabolic system
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 675
EP  - 688
VL  - 60
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a6/
LA  - en
ID  - CMJ_2010_60_3_a6
ER  - 
%0 Journal Article
%A Chen, Yujuan
%T Global and non-global existence of solutions to a nonlocal and degenerate quasilinear parabolic system
%J Czechoslovak Mathematical Journal
%D 2010
%P 675-688
%V 60
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a6/
%G en
%F CMJ_2010_60_3_a6
Chen, Yujuan. Global and non-global existence of solutions to a nonlocal and degenerate quasilinear parabolic system. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 3, pp. 675-688. http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a6/

[1] Anderson, J. R., Deng, K.: Global existence for degenerate parabolic equations with a non-local forcing. Math. Methods Appl. Sci. 20 (1997), 1069-1087. | DOI | MR | Zbl

[2] Chen, H. W.: Analysis of blow-up for a nonlinear degenerate parabolic equation. J. Math. Anal. Appl. 192 (1995), 180-193. | DOI | MR

[3] Chen, Y., Gao, H.: Asymptotic blow-up behavior for a nonlocal degenerate parabolic equation. J. Math. Anal. Appl. 330 (2007), 852-863. | DOI | MR | Zbl

[4] Deng, W., Li, Y., Xie, C.: Existence and nonexistence of global solutions of some nonlocal degenerate parabolic equations. Appl. Math. Lett. 16 (2003), 803-808. | DOI | MR | Zbl

[5] Deng, W., Li, Y., Xie, C.: Global existence and nonexistence for a class of degenerate parabolic systems. Nonlinear Anal., Theory Methods Appl. 55 (2003), 233-244. | DOI | MR | Zbl

[6] Duan, Z. W., Deng, W., Xie, C.: Uniform blow-up profile for a degenerate parabolic system with nonlocal source. Comput. Math. Appl. 47 (2004), 977-995. | DOI | MR

[7] Duan, Z. W., Zhou, L.: Global and blow-up solutions for nonlinear degenerate parabolic systems with crosswise-diffusion. J. Math. Anal. Appl. 244 (2000), 263-278. | DOI | MR | Zbl

[8] Friedman, A., Mcleod, B.: Blow-up of positive solutions of semilinear heat equations. Indiana Univ. Math. J. 34 (1985), 425-447. | DOI | MR | Zbl

[9] Friedman, A., Mcleod, B.: Blow-up of solutions of nonlinear degenerate parabolic equations. Arch. Ration. Mech. Appl. 96 (1987), 55-80. | DOI | MR

[10] Gage, M. E.: On the size of the blow-up set for a quasilinear parabolic equation. Contemp. Math. 127 (1992), 41-58. | DOI | MR | Zbl

[11] Ladyzenskaya, O. A., Solonnikov, V. A., Ural'tseva, N. N.: Linear and Quasilinear Equations of Parabolic Type. American Mathematical Society Providence (1968).

[12] Pao, C. V.: Nonlinear Parabolic and Elliptic Equations. Plenum Press New York (1992). | MR | Zbl

[13] Passo, R. Dal, Luckhaus, S.: A degenerate diffusion problem not in divergence form. J. Differ. Equations 69 (1987), 1-14. | DOI | MR

[14] Wang, M. X.: Some degenerate and quasilinear parabolic systems not in divergence form. J. Math. Anal. Appl. 274 (2002), 424-436. | DOI | MR | Zbl

[15] Wang, M. X., Xie, C. H.: A degenerate and strongly coupled quasilinear parabolic system not in divergence form. Z. Angew. Math. Phys. 55 (2004), 741-755. | DOI | MR | Zbl

[16] Wang, S., Wang, M. X., Xie, C. H.: A nonlinear degenerate diffusion equation not in divergence form. Z. Angew. Math. Phys. 51 (2000), 149-159. | DOI | MR | Zbl

[17] Wiegner, M.: A degenerate diffusion equation with a nonlinear source term. Nonlinear Anal., Theory Methods Appl. 28 (1997), 1977-1995. | DOI | MR | Zbl

[18] Zimmer, T.: On a degenerate parabolic equation. IWR Heidelberg. Preprint 93-05 (1993).