A cohomological Steinness criterion for holomorphically spreadable complex spaces
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 3, pp. 655-667 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $X$ be a complex space of dimension $n$, not necessarily reduced, whose cohomology groups $H^1(X,{\cal O}), \ldots , H^{n-1}(X,{\cal O})$ are of finite dimension (as complex vector spaces). We show that $X$ is Stein (resp., $1$-convex) if, and only if, $X$ is holomorphically spreadable (resp., $X$ is holomorphically spreadable at infinity). \endgraf This, on the one hand, generalizes a known characterization of Stein spaces due to Siu, Laufer, and Simha and, on the other hand, it provides a new criterion for $1$-convexity.
Let $X$ be a complex space of dimension $n$, not necessarily reduced, whose cohomology groups $H^1(X,{\cal O}), \ldots , H^{n-1}(X,{\cal O})$ are of finite dimension (as complex vector spaces). We show that $X$ is Stein (resp., $1$-convex) if, and only if, $X$ is holomorphically spreadable (resp., $X$ is holomorphically spreadable at infinity). \endgraf This, on the one hand, generalizes a known characterization of Stein spaces due to Siu, Laufer, and Simha and, on the other hand, it provides a new criterion for $1$-convexity.
Classification : 32C15, 32C35, 32E10, 32L20
Keywords: Stein space; 1-convex space; branched Riemannian domain; holomorphically spreadable complex space; structurally acyclic space
@article{CMJ_2010_60_3_a4,
     author = {V\^aj\^aitu, Viorel},
     title = {A cohomological {Steinness} criterion for holomorphically spreadable complex spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {655--667},
     year = {2010},
     volume = {60},
     number = {3},
     mrnumber = {2672407},
     zbl = {1224.32014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a4/}
}
TY  - JOUR
AU  - Vâjâitu, Viorel
TI  - A cohomological Steinness criterion for holomorphically spreadable complex spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 655
EP  - 667
VL  - 60
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a4/
LA  - en
ID  - CMJ_2010_60_3_a4
ER  - 
%0 Journal Article
%A Vâjâitu, Viorel
%T A cohomological Steinness criterion for holomorphically spreadable complex spaces
%J Czechoslovak Mathematical Journal
%D 2010
%P 655-667
%V 60
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a4/
%G en
%F CMJ_2010_60_3_a4
Vâjâitu, Viorel. A cohomological Steinness criterion for holomorphically spreadable complex spaces. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 3, pp. 655-667. http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a4/

[1] Alessandrini, L.: On the cohomology of a holomorphically separable complex analytic space. Bolletino U.M.I. 1-A (1982), 261-208. | MR | Zbl

[2] Bănică, C., Stănaşilă, O.: Sur les ouverts de Stein dans un espace complexe. C.R. Acad. Sci. Paris Sér. A--B 268 (1969), 1024-1027. | MR

[3] Coen, S.: Annulation de la cohomologie à valeur dans le faisceau structural et espaces de Stein. Compositio Math. 37 (1978), 63-75. | MR

[4] Fornæss, J.-E., Narasimhan, R.: The Levi problem on complex spaces with singularities. Math. Ann. 248 (1980), 47-72. | DOI | MR

[5] Forster, O.: Some remarks on parallelizable Stein manifolds. Bull. Amer. Math. Soc. 73 (1967), 712-716. | DOI | MR | Zbl

[6] Grauert, H.: Characterisierung der holomorph-vollständigen komplexen Räume. Math. Ann. 129 (1955), 233-259. | DOI | MR

[7] Gunning, R.-C., Narasimhan, R.: Immersion of open Riemann surfaces. Math. Ann. 174 (1967), 103-108. | DOI | MR | Zbl

[8] Gunning, R.-C., Rossi, H.: Analytic functions of several complex variables. Prentice-Hall, Inc., Englewood Cliffs, N.J. (1965). | MR | Zbl

[9] Gunning, R.-C.: Introduction to Holomorphic Functions of Several Variables, vol. III. Wadsworth & Brokes (1990). | MR

[10] Kaup, B., Kaup, L.: Holomorphic functions of several variables. An introduction to the fundamental theory. With the assistance of Gottfried Barthel. Translated from the German by Michael Bridgland, de Gruyter Studies in Mathematics, 3, Berlin (1983). | MR | Zbl

[11] Khue, N. V.: Stein morphisms and Riemann domains over Stein spaces. Acta Math. Vietnam. 10 (1985), 75-92. | MR

[12] Laufer, H.: On sheaf cohomology and envelopes of holomorphy. Ann. Math. 84 (1966), 102-118. | DOI | MR | Zbl

[13] Narasimhan, R.: The Levi problem for complex spaces II. Math. Ann. 146 (1962), 195-216. | DOI | MR | Zbl

[14] Narasimhan, R.: Complex analysis in one variable. Birkhäuser (1985). | MR | Zbl

[15] Scheja, G.: Fortsetzungssätze der komplex-analytischen Cohomologie und ihre algebraische Charakterisierung. Math. Ann. 157 (1964), 75-94. | DOI | MR | Zbl

[16] Serre, J.-P.: Quelques problèmes globaux relatifs aux variétés de Stein. Colloque sur les fonctions de plusieurs variables, tenu à Bruxelles (1953), 57-68 Georges Thone, Lige; Masson & Cie, Paris. | MR | Zbl

[17] Simha, R. R.: On Siu's characterisation of domains of holomorphy. J. Indian Math. Soc. 42 (1978), 1-4, 127-130. | MR | Zbl

[18] Siu, Y.-T.: Non-countable dimensions of cohomology groups of analytic sheaves and domains of holomorphy. Math. Z. 102 (1967), 17-29. | DOI | MR | Zbl

[19] Siu, Y.-T.: Analytic sheaf cohomology groups of dimension $n$ of $n$-dimensional complex spaces. Trans. Amer. Math. Soc. 143 (1969), 77-94. | MR | Zbl

[20] Siu, Y.-T.: Every Stein subvariety admits a Stein neighborhood. Invent. Math. 38 (1976), 89-100. | DOI | MR | Zbl

[21] Siu, Y.-T., Trautmann, G.: Gap sheaves and extension of coherent analytic subsheaves. Lect. Notes in Math., vol. 172, Springer-Verlag, Berlin (1976). | MR

[22] Vâjâitu, V.: A characterization of $1$-convexity. J. Math. Pures Appl. 84 (2005), 179-197. | DOI | MR

[23] Wiegmann, K.-W.: Über Quotienten holomorph-konvexer Räume. Math. Z. 97 (1967), 251-258. | DOI | MR