Keywords: absolute integrability; gauge Integral; H-K integral; Lebesgue integral
@article{CMJ_2010_60_3_a2,
author = {Myers, Timothy},
title = {An elementary proof of the theorem that absolute gauge integrability implies {Lebesgue} integrability},
journal = {Czechoslovak Mathematical Journal},
pages = {621--633},
year = {2010},
volume = {60},
number = {3},
mrnumber = {2672405},
zbl = {1224.26027},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a2/}
}
TY - JOUR AU - Myers, Timothy TI - An elementary proof of the theorem that absolute gauge integrability implies Lebesgue integrability JO - Czechoslovak Mathematical Journal PY - 2010 SP - 621 EP - 633 VL - 60 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a2/ LA - en ID - CMJ_2010_60_3_a2 ER -
Myers, Timothy. An elementary proof of the theorem that absolute gauge integrability implies Lebesgue integrability. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 3, pp. 621-633. http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a2/
[1] Bartle, R.: Return to the Riemann integral. Am. Math. Mon. 103 (1996), 625-632 . | DOI | MR | Zbl
[2] Bugajewska, D.: On the equation of $n$th order and the Denjoy integral. Nonlinear Anal. 34 (1998), 1111-1115. | MR | Zbl
[3] Bugajewska, D., Bugajewski, D.: On nonlinear integral equations and nonabsolute convergent integrals. Dyn. Syst. Appl. 14 (2005), 135-148 . | MR | Zbl
[4] Bugajewski, D., Szufla, S.: On the Aronszajn property for differential equations and the Denjoy integral. Ann. Soc. Math. 35 (1995), 61-69 . | MR | Zbl
[5] Chew, T., Flordeliza, F.: On $x'=f(t,x)$ and Henstock-Kurzweil integrals. Differ. Integral Equ. 4 (1991), 861-868 . | MR | Zbl
[6] Henstock, R.: Definitions of Riemann type of the variational integral. Proc. Lond. Math. Soc. 11 (1961), 404-418. | MR
[7] Henstock, R.: The General Theory of Integration. Oxford Math. Monogr., Clarendon Press, Oxford (1991) . | MR | Zbl
[8] Kurzweil, J.: Generalized Ordinary Differential Equations and Continuous Dependence on a Parameter. Czech. Math. J. 7 (1957), 418-449 . | MR | Zbl
[9] McLeod, R.: The Generalized Riemann Integral. Carus Math. Monogr., no. 20, Mathematical Association of America, Washington (1980) . | MR | Zbl
[10] Munkres, J.: Analysis on Manifolds. Addison-Wesley Publishing Company, Redwood City, CA (1991) . | MR | Zbl
[11] Pfeffer, W.: The divergence theorem. Trans. Am. Math. Soc. 295 (1986), 665-685 . | MR | Zbl
[12] Pfeffer, W.: The multidimensional fundamental theorem of calculus. J. Austral. Math. Soc. (Ser. A) 43 (1987), 143-170 . | MR | Zbl
[13] Rudin, W.: Principles of Mathematical Analysis. Third Ed., McGraw-Hill, New York (1976) . | MR | Zbl
[14] Rudin, W.: Real and Complex Analysis. McGraw-Hill, New York (1987). | MR | Zbl
[15] Schwabik, Š.: The Perron integral in ordinary differential equations. Differ. Integral Equ. 6 (1993), 863-882 . | MR | Zbl
[16] Spivak, M.: Calculus on Manifolds. W. A. Benjamin, Menlo Park, CA (1965). | MR | Zbl
[17] Stromberg, K.: An Introduction to Classical Real Analysis. Waldworth, Inc (1981). | MR | Zbl