An elementary proof of the theorem that absolute gauge integrability implies Lebesgue integrability
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 3, pp. 621-633 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

It is commonly known that absolute gauge integrability, or Henstock-Kurzweil (H-K) integrability implies Lebesgue integrability. In this article, we are going to present another proof of that fact which utilizes the basic definitions and properties of the Lebesgue and H-K integrals.
It is commonly known that absolute gauge integrability, or Henstock-Kurzweil (H-K) integrability implies Lebesgue integrability. In this article, we are going to present another proof of that fact which utilizes the basic definitions and properties of the Lebesgue and H-K integrals.
Classification : 26A39, 26A42
Keywords: absolute integrability; gauge Integral; H-K integral; Lebesgue integral
@article{CMJ_2010_60_3_a2,
     author = {Myers, Timothy},
     title = {An elementary proof of the theorem that absolute gauge integrability implies {Lebesgue} integrability},
     journal = {Czechoslovak Mathematical Journal},
     pages = {621--633},
     year = {2010},
     volume = {60},
     number = {3},
     mrnumber = {2672405},
     zbl = {1224.26027},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a2/}
}
TY  - JOUR
AU  - Myers, Timothy
TI  - An elementary proof of the theorem that absolute gauge integrability implies Lebesgue integrability
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 621
EP  - 633
VL  - 60
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a2/
LA  - en
ID  - CMJ_2010_60_3_a2
ER  - 
%0 Journal Article
%A Myers, Timothy
%T An elementary proof of the theorem that absolute gauge integrability implies Lebesgue integrability
%J Czechoslovak Mathematical Journal
%D 2010
%P 621-633
%V 60
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a2/
%G en
%F CMJ_2010_60_3_a2
Myers, Timothy. An elementary proof of the theorem that absolute gauge integrability implies Lebesgue integrability. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 3, pp. 621-633. http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a2/

[1] Bartle, R.: Return to the Riemann integral. Am. Math. Mon. 103 (1996), 625-632 . | DOI | MR | Zbl

[2] Bugajewska, D.: On the equation of $n$th order and the Denjoy integral. Nonlinear Anal. 34 (1998), 1111-1115. | MR | Zbl

[3] Bugajewska, D., Bugajewski, D.: On nonlinear integral equations and nonabsolute convergent integrals. Dyn. Syst. Appl. 14 (2005), 135-148 . | MR | Zbl

[4] Bugajewski, D., Szufla, S.: On the Aronszajn property for differential equations and the Denjoy integral. Ann. Soc. Math. 35 (1995), 61-69 . | MR | Zbl

[5] Chew, T., Flordeliza, F.: On $x'=f(t,x)$ and Henstock-Kurzweil integrals. Differ. Integral Equ. 4 (1991), 861-868 . | MR | Zbl

[6] Henstock, R.: Definitions of Riemann type of the variational integral. Proc. Lond. Math. Soc. 11 (1961), 404-418. | MR

[7] Henstock, R.: The General Theory of Integration. Oxford Math. Monogr., Clarendon Press, Oxford (1991) . | MR | Zbl

[8] Kurzweil, J.: Generalized Ordinary Differential Equations and Continuous Dependence on a Parameter. Czech. Math. J. 7 (1957), 418-449 . | MR | Zbl

[9] McLeod, R.: The Generalized Riemann Integral. Carus Math. Monogr., no. 20, Mathematical Association of America, Washington (1980) . | MR | Zbl

[10] Munkres, J.: Analysis on Manifolds. Addison-Wesley Publishing Company, Redwood City, CA (1991) . | MR | Zbl

[11] Pfeffer, W.: The divergence theorem. Trans. Am. Math. Soc. 295 (1986), 665-685 . | MR | Zbl

[12] Pfeffer, W.: The multidimensional fundamental theorem of calculus. J. Austral. Math. Soc. (Ser. A) 43 (1987), 143-170 . | MR | Zbl

[13] Rudin, W.: Principles of Mathematical Analysis. Third Ed., McGraw-Hill, New York (1976) . | MR | Zbl

[14] Rudin, W.: Real and Complex Analysis. McGraw-Hill, New York (1987). | MR | Zbl

[15] Schwabik, Š.: The Perron integral in ordinary differential equations. Differ. Integral Equ. 6 (1993), 863-882 . | MR | Zbl

[16] Spivak, M.: Calculus on Manifolds. W. A. Benjamin, Menlo Park, CA (1965). | MR | Zbl

[17] Stromberg, K.: An Introduction to Classical Real Analysis. Waldworth, Inc (1981). | MR | Zbl