The (signless) Laplacian spectral radius of unicyclic and bicyclic graphs with $n$ vertices and $k$ pendant vertices
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 3, pp. 849-867 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, the effects on the signless Laplacian spectral radius of a graph are studied when some operations, such as edge moving, edge subdividing, are applied to the graph. Moreover, the largest signless Laplacian spectral radius among the all unicyclic graphs with $n$ vertices and $k$ pendant vertices is identified. Furthermore, we determine the graphs with the largest Laplacian spectral radii among the all unicyclic graphs and bicyclic graphs with $n$ vertices and $k$ pendant vertices, respectively.
In this paper, the effects on the signless Laplacian spectral radius of a graph are studied when some operations, such as edge moving, edge subdividing, are applied to the graph. Moreover, the largest signless Laplacian spectral radius among the all unicyclic graphs with $n$ vertices and $k$ pendant vertices is identified. Furthermore, we determine the graphs with the largest Laplacian spectral radii among the all unicyclic graphs and bicyclic graphs with $n$ vertices and $k$ pendant vertices, respectively.
Classification : 05C50, 05C75
Keywords: Laplacian matrix; signless Laplacian matrix; spectral radius
@article{CMJ_2010_60_3_a16,
     author = {Liu, Muhuo and Tan, Xuezhong and Liu, BoLian},
     title = {The (signless) {Laplacian} spectral radius of unicyclic and bicyclic graphs with $n$  vertices and $k$  pendant vertices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {849--867},
     year = {2010},
     volume = {60},
     number = {3},
     mrnumber = {2672419},
     zbl = {1224.05311},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a16/}
}
TY  - JOUR
AU  - Liu, Muhuo
AU  - Tan, Xuezhong
AU  - Liu, BoLian
TI  - The (signless) Laplacian spectral radius of unicyclic and bicyclic graphs with $n$  vertices and $k$  pendant vertices
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 849
EP  - 867
VL  - 60
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a16/
LA  - en
ID  - CMJ_2010_60_3_a16
ER  - 
%0 Journal Article
%A Liu, Muhuo
%A Tan, Xuezhong
%A Liu, BoLian
%T The (signless) Laplacian spectral radius of unicyclic and bicyclic graphs with $n$  vertices and $k$  pendant vertices
%J Czechoslovak Mathematical Journal
%D 2010
%P 849-867
%V 60
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a16/
%G en
%F CMJ_2010_60_3_a16
Liu, Muhuo; Tan, Xuezhong; Liu, BoLian. The (signless) Laplacian spectral radius of unicyclic and bicyclic graphs with $n$  vertices and $k$  pendant vertices. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 3, pp. 849-867. http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a16/

[1] Brualdi, R. A., Solheid, E. S.: On the spectral radius of connected graphs. Publ. Inst. Math. Beograd 39(53) (1986), 45-54. | MR | Zbl

[2] Cardoso, D. M., Cvetković, D., Rowlinson, P., Simić, S. K.: A sharp lower bound for the least eigenvalue of the signless Laplacian of a non-bipartite graph. Linear Algebra Appl. 429 (2008), 2770-2780. | MR

[3] Cvetković, D. M., Doob, M., Sachs, H.: Spectra of Graphs. Theory and Applications. VEB Deutscher Verlag der Wissenschaften Berlin (1980).

[4] Cvetković, D. M., Rowlinson, P., Simić, S.: Eigenspaces of Graphs. Cambridge University Press Cambridge (1997), 56-60. | MR

[5] Cvetković, D., Rowlinson, P., Simić, S. K.: Signless Laplacians of finite graphs. Linear Algebra Appl. 423 (2007), 155-171. | DOI | MR

[6] Geng, X. Y., Li, S. C.: The spectral radius of tricyclic graphs with $n$ vertices and $k$ pendant vertices. Linear Algebra Appl. 428 (2008), 2639-2653. | MR

[7] Grossman, J. W., Kulkarni, D. M., Schochetman, I. E.: Algebraic graph theory without orientation. Linear Algebra Appl. 212-213 (1994), 289-307. | MR | Zbl

[8] Guo, J. M.: The effect on the Laplacian spectral radius of a graph by adding or grafting edges. Linear Algebra Appl. 413 (2006), 59-71. | MR | Zbl

[9] Guo, S. G.: The spectral radius of unicyclic and bicyclic graphs with $n$ vertices and $k$ pendant vertices. Linear Algebra Appl. 408 (2005), 78-85. | MR | Zbl

[10] Heuvel, J. van den: Hamilton cycles and eigenvalues of graphs. Linear Algebra Appl. 226-228 (1995), 723-730. | MR

[11] Li, J. S., Zhang, X.-D.: On the Laplacian eigenvalues of a graph. Linear Algebra Appl. 285 (1998), 305-307. | MR | Zbl

[12] Li, Q., Feng, K.: On the largest eigenvalue of a graph. Acta. Math. Appl. Sinica 2 (1979), 167-175 Chinese. | MR

[13] Liu, B. L.: Combinatorial Matrix Theory. Science Press Beijing (2005), Chinese.

[14] Merris, R.: Laplacian matrices of graphs: A survey. Linear Algebra Appl. 197-198 (1994), 143-176. | MR | Zbl

[15] Pan, Y. L.: Sharp upper bounds for the Laplacian graph eigenvalues. Linear Algebra Appl. 355 (2002), 287-295. | MR | Zbl

[16] Rojo, O., Soto, R., Rojo, H.: An always nontrivial upper bound for Laplacian graph eigenvalues. Linear Algebra Appl. 312 (2000), 155-159. | MR | Zbl

[17] Wu, B., Xiao, E., Hong, Y.: The spectral radius of trees on $k$ pendant vertices. Linear Algebra Appl. 395 (2005), 343-349. | MR | Zbl

[18] Zhang, X. D.: The Laplacian spectral radii of trees with degree sequences. Discrete Math. 308 (2008), 3143-3150. | DOI | MR | Zbl