Keywords: Laplacian matrix; signless Laplacian matrix; spectral radius
@article{CMJ_2010_60_3_a16,
author = {Liu, Muhuo and Tan, Xuezhong and Liu, BoLian},
title = {The (signless) {Laplacian} spectral radius of unicyclic and bicyclic graphs with $n$ vertices and $k$ pendant vertices},
journal = {Czechoslovak Mathematical Journal},
pages = {849--867},
year = {2010},
volume = {60},
number = {3},
mrnumber = {2672419},
zbl = {1224.05311},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a16/}
}
TY - JOUR AU - Liu, Muhuo AU - Tan, Xuezhong AU - Liu, BoLian TI - The (signless) Laplacian spectral radius of unicyclic and bicyclic graphs with $n$ vertices and $k$ pendant vertices JO - Czechoslovak Mathematical Journal PY - 2010 SP - 849 EP - 867 VL - 60 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a16/ LA - en ID - CMJ_2010_60_3_a16 ER -
%0 Journal Article %A Liu, Muhuo %A Tan, Xuezhong %A Liu, BoLian %T The (signless) Laplacian spectral radius of unicyclic and bicyclic graphs with $n$ vertices and $k$ pendant vertices %J Czechoslovak Mathematical Journal %D 2010 %P 849-867 %V 60 %N 3 %U http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a16/ %G en %F CMJ_2010_60_3_a16
Liu, Muhuo; Tan, Xuezhong; Liu, BoLian. The (signless) Laplacian spectral radius of unicyclic and bicyclic graphs with $n$ vertices and $k$ pendant vertices. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 3, pp. 849-867. http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a16/
[1] Brualdi, R. A., Solheid, E. S.: On the spectral radius of connected graphs. Publ. Inst. Math. Beograd 39(53) (1986), 45-54. | MR | Zbl
[2] Cardoso, D. M., Cvetković, D., Rowlinson, P., Simić, S. K.: A sharp lower bound for the least eigenvalue of the signless Laplacian of a non-bipartite graph. Linear Algebra Appl. 429 (2008), 2770-2780. | MR
[3] Cvetković, D. M., Doob, M., Sachs, H.: Spectra of Graphs. Theory and Applications. VEB Deutscher Verlag der Wissenschaften Berlin (1980).
[4] Cvetković, D. M., Rowlinson, P., Simić, S.: Eigenspaces of Graphs. Cambridge University Press Cambridge (1997), 56-60. | MR
[5] Cvetković, D., Rowlinson, P., Simić, S. K.: Signless Laplacians of finite graphs. Linear Algebra Appl. 423 (2007), 155-171. | DOI | MR
[6] Geng, X. Y., Li, S. C.: The spectral radius of tricyclic graphs with $n$ vertices and $k$ pendant vertices. Linear Algebra Appl. 428 (2008), 2639-2653. | MR
[7] Grossman, J. W., Kulkarni, D. M., Schochetman, I. E.: Algebraic graph theory without orientation. Linear Algebra Appl. 212-213 (1994), 289-307. | MR | Zbl
[8] Guo, J. M.: The effect on the Laplacian spectral radius of a graph by adding or grafting edges. Linear Algebra Appl. 413 (2006), 59-71. | MR | Zbl
[9] Guo, S. G.: The spectral radius of unicyclic and bicyclic graphs with $n$ vertices and $k$ pendant vertices. Linear Algebra Appl. 408 (2005), 78-85. | MR | Zbl
[10] Heuvel, J. van den: Hamilton cycles and eigenvalues of graphs. Linear Algebra Appl. 226-228 (1995), 723-730. | MR
[11] Li, J. S., Zhang, X.-D.: On the Laplacian eigenvalues of a graph. Linear Algebra Appl. 285 (1998), 305-307. | MR | Zbl
[12] Li, Q., Feng, K.: On the largest eigenvalue of a graph. Acta. Math. Appl. Sinica 2 (1979), 167-175 Chinese. | MR
[13] Liu, B. L.: Combinatorial Matrix Theory. Science Press Beijing (2005), Chinese.
[14] Merris, R.: Laplacian matrices of graphs: A survey. Linear Algebra Appl. 197-198 (1994), 143-176. | MR | Zbl
[15] Pan, Y. L.: Sharp upper bounds for the Laplacian graph eigenvalues. Linear Algebra Appl. 355 (2002), 287-295. | MR | Zbl
[16] Rojo, O., Soto, R., Rojo, H.: An always nontrivial upper bound for Laplacian graph eigenvalues. Linear Algebra Appl. 312 (2000), 155-159. | MR | Zbl
[17] Wu, B., Xiao, E., Hong, Y.: The spectral radius of trees on $k$ pendant vertices. Linear Algebra Appl. 395 (2005), 343-349. | MR | Zbl
[18] Zhang, X. D.: The Laplacian spectral radii of trees with degree sequences. Discrete Math. 308 (2008), 3143-3150. | DOI | MR | Zbl