The Laplacian spectral radius of graphs
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 3, pp. 835-847 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The Laplacian spectral radius of a graph is the largest eigenvalue of the associated Laplacian matrix. In this paper, we improve Shi's upper bound for the Laplacian spectral radius of irregular graphs and present some new bounds for the Laplacian spectral radius of some classes of graphs.
The Laplacian spectral radius of a graph is the largest eigenvalue of the associated Laplacian matrix. In this paper, we improve Shi's upper bound for the Laplacian spectral radius of irregular graphs and present some new bounds for the Laplacian spectral radius of some classes of graphs.
Classification : 05C50
Keywords: graph; Laplacian spectral radius; bounds
@article{CMJ_2010_60_3_a15,
     author = {Li, Jianxi and Shiu, Wai Chee and Chang, An},
     title = {The {Laplacian} spectral radius of graphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {835--847},
     year = {2010},
     volume = {60},
     number = {3},
     mrnumber = {2672418},
     zbl = {1224.05304},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a15/}
}
TY  - JOUR
AU  - Li, Jianxi
AU  - Shiu, Wai Chee
AU  - Chang, An
TI  - The Laplacian spectral radius of graphs
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 835
EP  - 847
VL  - 60
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a15/
LA  - en
ID  - CMJ_2010_60_3_a15
ER  - 
%0 Journal Article
%A Li, Jianxi
%A Shiu, Wai Chee
%A Chang, An
%T The Laplacian spectral radius of graphs
%J Czechoslovak Mathematical Journal
%D 2010
%P 835-847
%V 60
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a15/
%G en
%F CMJ_2010_60_3_a15
Li, Jianxi; Shiu, Wai Chee; Chang, An. The Laplacian spectral radius of graphs. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 3, pp. 835-847. http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a15/

[1] Bondy, J., Murty, U.: Graph Theory with Applications. MacMillan New York (1976). | MR

[2] Cioabǎ, S.: The spectral radius and the maximum degree of irregular graphs. Electron. J. Combin. 14, $\rm{ Research paper }$ R38 (2007). | DOI | MR

[3] Haemers, W.: Interlacing eigenvalues and graphs. Linear Algebra Appl. 226-228 (1995), 593-616. | MR | Zbl

[4] Merris, R.: Laplacian matrix of graphs: a survey. Linear Algebra Appl. 197-198 (1994), 143-176. | MR

[5] Liu, B., Shen, J., Wang, X.: On the largest eigenvalue of non-regular graphs. J. Combin. Theory Ser. B. 97 (2007), 1010-1018. | DOI | MR | Zbl

[6] Mohar, B.: Some applications of Laplace eigenvalues of graphs. Notes taken by Martin Juvan. Graph Symmetry: Algebraic Methods and Applications. NATO ASI Ser., Ser. C, Math. Phys. Sci. Vol. 497 G. Hahn et al. Kluwer Academic Publishers Dordrecht (1997), 225-275. | MR | Zbl

[7] Motzkin, T., Straus, E.: Maxima for graphs and a new proof of a theorem of Turán. Canad. J. Math. 17 (1965), 533-540. | DOI | MR | Zbl

[8] Nikiforov, V.: Bounds on graph eigenvalues II. Linear Algebra Appl. 427 (2007), 183-189. | MR | Zbl

[9] Shi, L.: Bounds on the (Laplacian) spectral radius of graphs. Linear Algebra. Appl. 422 (2007), 755-770. | DOI | MR | Zbl

[10] Stevanovi'c, D.: The largest eigenvalue of nonregular graphs. J. Combin. Theory Ser. B. 91 (2004), 143-146. | DOI | MR

[11] Zhang, X.-D., Luo, R.: The spectral radius of triangle-free graphs. Australas. J. Comb. 26 (2002), 33-39. | MR | Zbl

[12] Zhang, X.-D.: Eigenvector and eigenvalues of non-regular graphs. Linear Algebra Appl. 409 (2005), 79-86. | DOI | MR