On asymptotic behavior of solutions of $n$-th order Emden-Fowler differential equations with advanced argument
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 3, pp. 817-833 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study oscillatory properties of solutions of the Emden-Fowler type differential equation $$u^{(n)}(t)+p(t)\big |u(\sigma (t))\big |^\lambda \operatorname{sign} u(\sigma (t))=0,$$ where $0\lambda 1$, $p\in L_{\rm loc }(\Bbb R_+;\Bbb R)$, $\sigma \in C(\Bbb R_+;\Bbb R_+)$ and $\sigma (t)\ge t$ for $t\in \Bbb R_+$. \endgraf Sufficient (necessary and sufficient) conditions of new type for oscillation of solutions of the above equation are established. \endgraf Some results given in this paper generalize the results obtained in the paper by Kiguradze and Stavroulakis (1998).
We study oscillatory properties of solutions of the Emden-Fowler type differential equation $$u^{(n)}(t)+p(t)\big |u(\sigma (t))\big |^\lambda \operatorname{sign} u(\sigma (t))=0,$$ where $0\lambda 1$, $p\in L_{\rm loc }(\Bbb R_+;\Bbb R)$, $\sigma \in C(\Bbb R_+;\Bbb R_+)$ and $\sigma (t)\ge t$ for $t\in \Bbb R_+$. \endgraf Sufficient (necessary and sufficient) conditions of new type for oscillation of solutions of the above equation are established. \endgraf Some results given in this paper generalize the results obtained in the paper by Kiguradze and Stavroulakis (1998).
Classification : 34C10, 34K11, 34K15
Keywords: proper solution; property {\bf A}; property {\bf B}
@article{CMJ_2010_60_3_a14,
     author = {Koplatadze, R.},
     title = {On asymptotic behavior of solutions of $n$-th order {Emden-Fowler} differential equations with advanced argument},
     journal = {Czechoslovak Mathematical Journal},
     pages = {817--833},
     year = {2010},
     volume = {60},
     number = {3},
     mrnumber = {2672417},
     zbl = {1224.34214},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a14/}
}
TY  - JOUR
AU  - Koplatadze, R.
TI  - On asymptotic behavior of solutions of $n$-th order Emden-Fowler differential equations with advanced argument
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 817
EP  - 833
VL  - 60
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a14/
LA  - en
ID  - CMJ_2010_60_3_a14
ER  - 
%0 Journal Article
%A Koplatadze, R.
%T On asymptotic behavior of solutions of $n$-th order Emden-Fowler differential equations with advanced argument
%J Czechoslovak Mathematical Journal
%D 2010
%P 817-833
%V 60
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a14/
%G en
%F CMJ_2010_60_3_a14
Koplatadze, R. On asymptotic behavior of solutions of $n$-th order Emden-Fowler differential equations with advanced argument. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 3, pp. 817-833. http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a14/

[1] Kiguradze, I., Stavroulakis, I.: On the oscillation of solutions of higher order Emden-Fowler advanced differential equations. Appl. Anal. 70 (1998), 97-112. | DOI | MR | Zbl

[2] Kondrat'ev, V. A.: Oscillatory properties of solutions of the equation $y\sp{(n)}+p(x)y=0$. Russian Trudy Moskov. Mat. Obsc. 10 (1961), 419-436. | MR

[3] Koplatadze, R.: On oscillatory solutions of second order delay differential inequalities. J. Math. Anal. Appl. 42 (1973), 148-157. | DOI | MR | Zbl

[4] Koplatadze, R.: A note on the oscillation of the solutions of higher order differential inequalities and equations with retarded argument. Russian Differentsial'nye Uravneniya 10 (1974), 1400-1405, 1538. | MR

[5] Koplatadze, R., Chanturia, T.: Oscillatory properties of differential equations with deviating argument. Russian With Georgian and English summaries. Izdat. Tbilis. Univ., Tbilisi (1977), 115. | MR

[6] Koplatadze, R.: Some properties of the solutions of nonlinear differential inequalities and equations with retarded argument. Russian Differentsial'nye Uravneniya 12 (1976), 1971-1984. | MR

[7] Koplatadze, R.: On oscillatory properties of solutions of functional-differential equations. Mem. Differential Equations Math. Phys. 3 (1994), 179 pp. | MR | Zbl

[8] Koplatadze, R.: On asymptotic behaviour of solutions of functional-differential equations. Equadiff 8 (Bratislava, 1993). Tatra Mt. Math. Publ. 4 (1994), 143-146. | MR | Zbl

[9] Koplatadze, R.: Quasi-linear functional differential equations with Property A. J. Math. Anal. Appl. 330 (2007), 483-510. | DOI | MR

[10] Graef, J., Koplatadze, R., Kvinikadze, G.: Nonlinear functional differential equations with Properties A and B. J. Math. Anal. Appl. 306 (2005), 136-160. | DOI | MR | Zbl

[11] Koplatadze, R.: On asymptotic behavior of solutions of Emden-Fowler advanced differential equation. Math. Modeling and Computer Simulation of Material Technologies. Proceedings of the 5-th International Conference Ariel 2 (2008), 731-735.

[12] Koplatadze, R.: On oscillatory properties of solutions of generalized Emden-Fowler type differential equations. Proc. A. Razmadze Math. Inst. 145 (2007), 117-121. | MR | Zbl

[13] Koplatadze, R.: On asymptotic behavior of solutions of almost linear and essentially nonlinear differential equations. Nonlinear Anal. Theory, Methods and Appl. (accepted).

[14] Gramatikopoulos, M. K., Koplatadze, R., Kvinikadze, G.: Linear functional differential equations with Property A. J. Math. Anal. Appl. 284 (2003), 294-314. | DOI | MR